69 research outputs found

    Combination of searches for heavy spin-1 resonances using 139 fb−1 of proton-proton collision data at s = 13 TeV with the ATLAS detector

    Get PDF
    A combination of searches for new heavy spin-1 resonances decaying into different pairings of W, Z, or Higgs bosons, as well as directly into leptons or quarks, is presented. The data sample used corresponds to 139 fb−1 of proton-proton collisions at = 13 TeV collected during 2015–2018 with the ATLAS detector at the CERN Large Hadron Collider. Analyses selecting quark pairs (qq, bb, , and tb) or third-generation leptons (τν and ττ) are included in this kind of combination for the first time. A simplified model predicting a spin-1 heavy vector-boson triplet is used. Cross-section limits are set at the 95% confidence level and are compared with predictions for the benchmark model. These limits are also expressed in terms of constraints on couplings of the heavy vector-boson triplet to quarks, leptons, and the Higgs boson. The complementarity of the various analyses increases the sensitivity to new physics, and the resulting constraints are stronger than those from any individual analysis considered. The data exclude a heavy vector-boson triplet with mass below 5.8 TeV in a weakly coupled scenario, below 4.4 TeV in a strongly coupled scenario, and up to 1.5 TeV in the case of production via vector-boson fusion

    Tumours of the Neuroendocrine System and the Peripheral Nervous System

    No full text

    Beam-induced backgrounds measured in the ATLAS detector during local gas injection into the LHC beam vacuum

    No full text
    Abstract Inelastic beam-gas collisions at the Large Hadron Collider (LHC), within a few hundred metres of the ATLAS experiment, are known to give the dominant contribution to beam backgrounds. These are monitored by ATLAS with a dedicated Beam Conditions Monitor (BCM) and with the rate of fake jets in the calorimeters. These two methods are complementary since the BCM probes backgrounds just around the beam pipe while fake jets are observed at radii of up to several metres. In order to quantify the correlation between the residual gas density in the LHC beam vacuum and the experimental backgrounds recorded by ATLAS, several dedicated tests were performed during LHC Run 2. Local pressure bumps, with a gas density several orders of magnitude higher than during normal operation, were introduced at different locations. The changes of beam-related backgrounds, seen in ATLAS, are correlated with the local pressure variation. In addition the rates of beam-gas events are estimated from the pressure measurements and pressure bump profiles obtained from calculations. Using these rates, the efficiency of the ATLAS beam background monitors to detect beam-gas events is derived as a function of distance from the interaction point. These efficiencies and characteristic distributions of fake jets from the beam backgrounds are found to be in good agreement with results of beam-gas simulations performed with the Fluka Monte Carlo programme.</jats:p

    Search for heavy neutral Higgs bosons decaying into a top quark pair in 140 fb−1 of proton-proton collision data at s \sqrt{s} = 13 TeV with the ATLAS detector

    Get PDF
    Abstract A search for heavy pseudo-scalar (A) and scalar (H) Higgs bosons decaying into a top-quark pair (tt t\overline{t} t t ¯ ) has been performed with 140 fb−1 of proton-proton collision data collected by the ATLAS experiment at the Large Hadron Collider at a centre-of-mass energy of s \sqrt{s} s = 13 TeV. Interference effects between the signal process and Standard Model (SM) tt t\overline{t} t t ¯ production are taken into account. Final states with exactly one or exactly two electrons or muons are considered. No significant deviation from the SM prediction is observed. The results of the search are interpreted in the context of a two-Higgs-doublet model (2HDM) of type II in the alignment limit with mass-degenerate pseudo-scalar and scalar Higgs bosons (mA = mH) and the hMSSM parameterisation of the minimal supersymmetric extension of the Standard Model. Ratios of the two vacuum expectation values, tan β, smaller than 3.49 (3.16) are excluded at 95% confidence level for mA = mH = 400 GeV in the 2HDM (hMSSM). Masses up to 1240 GeV are excluded for the lowest tested tan β value of 0.4 in the 2HDM. In the hMSSM, masses up to 950 GeV are excluded for tan β = 1.0. In addition, generic exclusion limits are derived separately for single scalar and pseudo-scalar states for different choices of their mass and total width.</jats:p
    corecore