6 research outputs found
A novel approach to locate Phytophthora infestans resistance genes on the potato genetic map
Mapping resistance genes is usually accomplished by phenotyping a segregating population for the resistance trait and genotyping it using a large number of markers. Most resistance genes are of the NBS-LRR type, of which an increasing number is sequenced. These genes and their analogs (RGAs) are often organized in clusters. Clusters tend to be rather homogenous, viz. containing genes that show high sequence similarity with each other. From many of these clusters the map position is known. In this study we present and test a novel method to quickly identify to which cluster a new resistance gene belongs and to produce markers that can be used for introgression breeding. We used NBS profiling to identify markers in bulked DNA samples prepared from resistant and susceptible genotypes of small segregating populations. Markers co-segregating with resistance can be tested on individual plants and directly used for breeding. To identify the resistance gene cluster a gene belongs to, the fragments were sequenced and the sequences analyzed using bioinformatics tools. Putative map positions arising from this analysis were validated using markers mapped in the segregating population. The versatility of the approach is demonstrated with a number of populations derived from wild Solanum species segregating for P. infestans resistance. Newly identified P. infestans resistance genes originating from S. verrucosum, S. schenckii, and S. capsicibaccatum could be mapped to potato chromosomes 6, 4, and 11, respectively
Identification of a resistance gene Rpi-dlc1 to Phytophthora infestans in European accessions of Solanum dulcamara
Initial screening of 14 Solanum dulcamara accessions enabled the identification of individuals resistant and susceptible to Phytophthora infestans. Crosses between contrasting genotypes resulted in three F2–BC1 populations segregating for resistance to late blight in a laboratory assay and under field conditions. Genetic profiling of one of these populations using 128 AFLP primers generated three markers linked to the resistant phenotype. Blast analysis of the sequenced markers resulted in a plausible gene position on the distal end of the long arm of chromosome 9 that could be confirmed by CAPS markers. Thus, we describe a first resistant gene, named Rpi-dlc1, from S. dulcamara, a Solanum species native to Europe. In addition, one population was tested for broadness of resistance responses using a set of seven additional P. infestans isolates, varying in virulence. This indicated the possible presence of additional Rpi genes
Progress in mapping and cloning qualitative and quantitative resistance against Phytophthora infestans in potato and its wild relatives
International audienceCultivated potato is susceptible to many pests and pathogens, none of which is more of a threat to potato agriculture than the late blight disease, caused by the oomycete Phytophthora infestans (Mont.) de Bary. To date all efforts to thwart this most adaptive of pathogens have failed, and early attempts to deploy ‘R genes’ introgressed from the wild Mexican hexaploid Solanum demissum ended in abject failure. With the advent of facile gene mapping and cloning, allied to knowledge of plant resistance gene structure, renewed efforts are leading to mapping and isolation of new sources of late blight resistance in potato wild species, many of which are being performed under the auspices of the BIOEXPLOIT project (Sub-project 2). We document recent advances in late blight resistance gene mapping and isolation, and postulate how these genes, allied to knowledge of pathogen effectors and their recognition specificity, may greatly enhance our chances of halting the progress of late blight disease in potato crops worldwide