11 research outputs found

    Hemolytic uremic syndrome following the infusion of oxaliplatin: case report

    Get PDF
    BACKGROUND: Oxaliplatin is a platinum derivative, which is used in the treatment of colorectal cancer. A small number of oxaliplatin-related hemolytic and/or thrombocytopenic reactions have been reported. We present a case of hemolytic-uremic syndrome that developed during the 4(th )cycle of combination chemotherapy with oxaliplatin, 5-fluorouracil and leucovorin. CASE PRESENTATION: A 52-year-old-male was administered chemotherapy with oxaliplatin, 5-fluorouracil and leucovorin for a Duke's stage C colorectal carcinoma. Three cycles of chemotherapy had been administered without complications when, at the beginning of the fourth cycle, the patient developed clinical and laboratory abnormalities consistent with the development of the hemolytic-uremic syndrome. Treatment was discontinued; the patient was managed with monitored IV hydration and loop diuretics, high dose corticosteroids and fresh frozen plasma infusions and recovered completely. CONCLUSION: The hemolytic-uremic syndrome may be a rare complication of oxaliplatin-based chemotherapy. Clinicians need to maintain a high index of suspicion to diagnose and treat this life-threatening adverse event

    SARS-CoV-2 Omicron-B.1.1.529 leads to widespread escape from neutralizing antibody responses

    Get PDF
    On 24th November 2021, the sequence of a new SARS-CoV-2 viral isolate Omicron-B.1.1.529 was announced, containing far more mutations in Spike (S) than previously reported variants. Neutralization titers of Omicron by sera from vaccinees and convalescent subjects infected with early pandemic Alpha, Beta, Gamma, or Delta are substantially reduced, or the sera failed to neutralize. Titers against Omicron are boosted by third vaccine doses and are high in both vaccinated individuals and those infected by Delta. Mutations in Omicron knock out or substantially reduce neutralization by most of the large panel of potent monoclonal antibodies and antibodies under commercial development. Omicron S has structural changes from earlier viruses and uses mutations that confer tight binding to ACE2 to unleash evolution driven by immune escape. This leads to a large number of mutations in the ACE2 binding site and rebalances receptor affinity to that of earlier pandemic viruses

    Antibody evasion by the P.1 strain of SARS-CoV-2

    No full text
    Terminating the SARS-CoV-2 pandemic relies upon pan-global vaccination. Current vaccines elicit neutralizing antibody responses to the virus spike derived from early isolates. However, new strains have emerged with multiple mutations, including P.1 from Brazil, B.1.351 from South Africa, and B.1.1.7 from the UK (12, 10, and 9 changes in the spike, respectively). All have mutations in the ACE2 binding site, with P.1 and B.1.351 having a virtually identical triplet (E484K, K417N/T, and N501Y), which we show confer similar increased affinity for ACE2. We show that, surprisingly, P.1 is significantly less resistant to naturally acquired or vaccine-induced antibody responses than B.1.351, suggesting that changes outside the receptor-binding domain (RBD) impact neutralization. Monoclonal antibody (mAb) 222 neutralizes all three variants despite interacting with two of the ACE2-binding site mutations. We explain this through structural analysis and use the 222 light chain to largely restore neutralization potency to a major class of public antibodies

    SARS-CoV-2 Omicron-B.1.1.529 leads to widespread escape from neutralizing antibody responses

    Get PDF
    On 24<sup>th</sup> November 2021, the sequence of a new SARS-CoV-2 viral isolate Omicron-B.1.1.529 was announced, containing far more mutations in Spike (S) than previously reported variants. Neutralization titers of Omicron by sera from vaccinees and convalescent subjects infected with early pandemic Alpha, Beta, Gamma, or Delta are substantially reduced, or the sera failed to neutralize. Titers against Omicron are boosted by third vaccine doses and are high in both vaccinated individuals and those infected by Delta. Mutations in Omicron knock out or substantially reduce neutralization by most of the large panel of potent monoclonal antibodies and antibodies under commercial development. Omicron S has structural changes from earlier viruses and uses mutations that confer tight binding to ACE2 to unleash evolution driven by immune escape. This leads to a large number of mutations in the ACE2 binding site and rebalances receptor affinity to that of earlier pandemic viruses
    corecore