11 research outputs found

    A retrospective descriptive study of the characteristics of deliberate self-poisoning patients with single or repeat presentations to an Australian emergency medicine network in a one year period

    Get PDF
    Background - A proportion of deliberate self-poisoning (DSP) patients present repeatedly to the emergency department (ED). Understanding the characteristics of frequent DSP patients and their presentation is a first step to implementing interventions that are designed to prevent repeated self-poisoning. Methods - All DSP presentations to three networked Australian ED’s were retrospectively identified from the ED electronic medical record and hospital scanned medical records for 2011. Demographics, types of drugs ingested, emergency department length of stay and disposition for the repeat DSP presenters were extracted and compared to those who presented once with DSP in a one year period. Logistic regression was used to analyse repeat versus single DSP data. Results - The study determined 755 single presenters and 93 repeat DSP presenters. The repeat presenters contributed to 321 DSP presentations. They were more likely to be unemployed (61.0% versus 39.9%, p = 0.008) and have a psychiatric illness compared to single presenters (36.6% versus 15.5%, p < 0.001). Repeat presenters were less likely to receive a toxicology consultation (11.5% versus 27.3%, p < 0.001) and were more likely to abscond from the ED (7.5% versus 3.4%, p = 0.004). Repeat presenters were more likely to ingest paracetamol and antipsychotics than single presenters. The defined daily dose for the most common antipsychotic ingested, quetiapine, was less in the repeat presenter group (median 1.9 [IQR: 1.3-3.5]) compared with the single presenter group (4 [1.4-9.5]), (OR 0.85, 95% CI 0.74-0.99). Conclusion - Patients who present repeatedly to the ED with DSP have pre-existing disadvantages, with increased likelihood of being unemployed and having a mental illness. These patients are also more likely to have health service inequities given the greater likelihood to abscond from the ED and lower likelihood of receiving toxicology consultation for their DSP. Early recognition of repeat DSP patients in the ED may facilitate the development of individualised care plans with the aim to reduce repeat episodes of self-poisoning and subsequent risk of successful suicide

    UHRF genes regulate programmed interdigital tissue regression and chondrogenesis in the embryonic limb

    Get PDF
    The primordium of the limb contains a number of progenitors far superior to those necessary to form the skeletal components of this appendage. During the course of development, precursors that do not follow the skeletogenic program are removed by cell senescence and apoptosis. The formation of the digits provides the most representative example of embryonic remodeling via cell degeneration. In the hand/foot regions of the embryonic vertebrate limb (autopod), the interdigital tissue and the zones of interphalangeal joint formation undergo massive degeneration that accounts for jointed and free digit morphology. Developmental senescence and caspase-dependent apoptosis are considered responsible for these remodeling processes. Our study uncovers a new upstream level of regulation of remodeling by the epigenetic regulators Uhrf1 and Uhrf2 genes. These genes are spatially and temporally expressed in the pre-apoptotic regions. UHRF1 and UHRF2 showed a nuclear localization associated with foci of methylated cytosine. Interestingly, nuclear labeling increased in cells progressing through the stages of degeneration prior to TUNEL positivity. Functional analysis in cultured limb skeletal progenitors via the overexpression of either UHRF1 or UHRF2 inhibited chondrogenesis and induced cell senescence and apoptosis accompanied with changes in global and regional DNA methylation. Uhrfs modulated canonical cell differentiation factors, such as Sox9 and Scleraxis, promoted apoptosis via up-regulation of Bak1, and induced cell senescence, by arresting progenitors at the S phase and upregulating the expression of p21. Expression of Uhrf genes in vivo was positively modulated by FGF signaling. In the micromass culture assay Uhrf1 was down-regulated as the progenitors lost stemness and differentiated into cartilage. Together, our findings emphasize the importance of tuning the balance between cell differentiation and cell stemness as a central step in the initiation of the so-called ?embryonic programmed cell death? and suggest that the structural organization of the chromatin, via epigenetic modifications, may be a precocious and critical factor in these regulatory events.Funding: We thank Montse Fernandez Calderon, Susana Dawalibi, and Sonia Perez Mantecon, for excellent technical assistance. This work was supported by a Grant (BFU2017-84046-P) from the Spanish Science and Innovation Ministry to J.A.M

    Molecular mechanisms of cell death in neurological diseases

    No full text
    corecore