10,064 research outputs found

    A Bayesian Networks Approach to Operational Risk

    Full text link
    A system for Operational Risk management based on the computational paradigm of Bayesian Networks is presented. The algorithm allows the construction of a Bayesian Network targeted for each bank using only internal loss data, and takes into account in a simple and realistic way the correlations among different processes of the bank. The internal losses are averaged over a variable time horizon, so that the correlations at different times are removed, while the correlations at the same time are kept: the averaged losses are thus suitable to perform the learning of the network topology and parameters. The algorithm has been validated on synthetic time series. It should be stressed that the practical implementation of the proposed algorithm has a small impact on the organizational structure of a bank and requires an investment in human resources limited to the computational area

    The balance between fumarate and malate plays an important role in plant development and postharvest quality in tomato fruit

    Get PDF
    Organic acids, produced as intermediates of the tricarboxylic cycle, play a crucial role in the plant primary metabolism and are considered as being ones of the most important quality traits in edible fruits. Even if they are key metabolites in a multitude of cellular functions, little is known about their physiological relevance and regulation. Transgenic tomato (Solanum lycopersicum) plants expressing constitutively a bacterial maleate isomerase, which converts reversibly maleate to fumarate, were generated in order to improve our knowledge about the role of organic acids in the crop and fruit metabolism. Growth and reproduction were affected by the unbalance of tricarboxylic cycle intermediates, as a dwarf phenotype and a flowering delay were observed in the transgenic plants. In addition, a delay in chlorophyll synthesis, a decrease in the numbers of stomata and significant changes in some photosynthetic parameters indicated alterations in central primary metabolism. Postharvest was also impaired, as transgenic fruits showed increased water lost and deterioration, indicating a possible role of the organic acids in cell wall metabolism. Finally, preliminary metabolomics analysis pointed out important changes during fruit ripening in flavor-related metabolites, such as acids and sugars, revealing the importance of organic acids in fruit metabolism. Taken together, these data indicate a pivotal role of tricarboxylic cycle intermediates, such as malate or fumarate, as regulatory metabolites. Besides their role in quality fruit characteristics, they are involved in a multitude of functions including growth and photosynthesis.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    SiPM and front-end electronics development for Cherenkov light detection

    Full text link
    The Italian Institute of Nuclear Physics (INFN) is involved in the development of a demonstrator for a SiPM-based camera for the Cherenkov Telescope Array (CTA) experiment, with a pixel size of 6×\times6 mm2^2. The camera houses about two thousands electronics channels and is both light and compact. In this framework, a R&D program for the development of SiPMs suitable for Cherenkov light detection (so called NUV SiPMs) is ongoing. Different photosensors have been produced at Fondazione Bruno Kessler (FBK), with different micro-cell dimensions and fill factors, in different geometrical arrangements. At the same time, INFN is developing front-end electronics based on the waveform sampling technique optimized for the new NUV SiPM. Measurements on 1×\times1 mm2^2, 3×\times3 mm2^2, and 6×\times6 mm2^2 NUV SiPMs coupled to the front-end electronics are presentedComment: In Proceedings of the 34th International Cosmic Ray Conference (ICRC2015), The Hague, The Netherlands. All CTA contributions at arXiv:1508.0589

    Maturação de tubérculos da cultivar de batata BRS Ana.

    Get PDF
    bitstream/item/82142/1/Boletim-166-1.pd

    Efficacy of ginger as antiemetic in children with acute gastroenteritis: a randomised controlled trial

    Get PDF
    Background: Ginger is a spice with a long history of use as a traditional remedy for nausea and vomiting. No data on the efficacy of ginger are presently available for children with vomiting associated with acute gastroenteritis (AGE). Aim: To test whether ginger can reduce vomiting in children with AGE. Methods: Double-blind, randomised placebo-controlled trial in outpatients aged 1 to 10 years with AGE-associated vomiting randomised to ginger or placebo. The primary outcome was the occurrence of ≥1 episode of vomiting after the first dose of treatment. Severity of vomiting and safety were also assessed. Results: Seventy-five children were randomised to the ginger arm and 75 to the placebo arm. Five children in the ginger arm and 4 in the placebo arm refused to participate in the study shortly after randomisation, leaving 70 children in the ginger arm and 71 in the placebo arm (N = 141). At intention-to-treat analysis (N = 150), assuming that all children lost to follow-up had reached the primary outcome, the incidence of the main outcome was 67% (95% CI 56 to 77) in the ginger group and 87% (95% CI 79 to 94) in the placebo group, corresponding to the absolute risk reduction for the ginger versus the placebo group of −20% (95% CI −33% to −7%, P = 0.003), with a number needed to treat of 5 (95% CI 3 to 15). Conclusion: Oral administration of ginger is effective and safe at improving vomiting in children with AGE. Trial registration: The trial was registered on https://clinicaltrials.gov/ with the identifier NCT02701491

    Augmented reality for dental implantology: a pilot clinical report of two cases

    Get PDF
    Background: Despite the limited number of articles dedicated to its use, augmented reality (AR) is an emerging technology that has shown to have increasing applications in multiple different medical sectors. These include, but are not limited to, the Maxillo-facial and Dentistry disciplines of medicine. In these medical specialties, the focus of AR technology is to achieve a more visible surgical field during an operation. Currently, this goal is brought about by an accurate display of either static or dynamic diagnostic images via the use of a visor or specific glasses. The objective of this study is to evaluate the feasibility of using a virtual display for dynamic navigation via AR. The secondary outcome is to evaluate if the use of this technology could affect the accuracy of dynamic navigation. Case presentation: Two patients, both needing implant rehabilitation in the upper premolar area, were treated with flapless surgery. Prior to the procedure itself, the position of the implant was virtually planned and placed for each of the patients using their previous scans. This placement preparation contributed to a dynamic navigation system that was displayed on AR glasses. This, in turn, allowed for the use of a computer-aided/image-guided procedure to occur. Dedicated software for surface superimposition was then used to match the planned position of the implant and the real one obtained from the postoperative scan. Accuracies, using this procedure were evaluated by way of measuring the deviation between real and planned positions of the implants. For both surgeries it was possible to proceed using the AR technology as planned. The deviations for the first implant were 0.53\u2009mm at the entry point and 0.50\u2009mm at the apical point and for the second implant were 0.46\u2009mm at the entry point and 0.48\u2009mm at the apical point. The angular deviations were respectively 3.05\ub0 and 2.19\ub0. Conclusions: From the results of this pilot study, it seems that AR can be useful in dental implantology for displaying dynamic navigation systems. While this technology did not seem to noticeably affect the accuracy of the procedure, specific software applications should further optimize the results

    Digital planning of composite customized veneers using Digital Smile Design: Evaluation of its accuracy and manufacturing

    Get PDF
    Objectives: This study aimed to evaluate the production of customized composite veneers starting from a two-dimensional (2D) digital preview using the Digital Smile System (DSS). Material and Methods: A photographic examination of 30 patients was performed by taking two digital pictures of the face and a digital preview through the DSS. Moreover, optical scans of the dental arches were obtained and the data were entered into a three-dimensional (3D) software to prepare a virtual preview. The standard tessellation language files were sent for production using CAD-CAM technology. The Friedman test, Bonferroni, and Dunn post hoc tests were used, comparing the linear measurements of the 2D and 3D plans and the final veneers (α =.05). Results: Significant differences emerged between the pictures and digital scans on the mesial–distal widths of the lateral incisors and canine. Linear measurements in the 2D plan were significantly different from those of the 3D plan, except for the height measures of incisors. No significant changes were found on comparing the parameters of the 2D and 3D plans with those of the final pieces. Conclusions: The customized veneers were clinically adequate and similar to 2D and 3D plans, although significant differences emerged between the picture and digital scans as well as between the 2D and 3D plans

    Cloning and sequence analysis of cDNAs encoding the cytosolic precursors of subunits GapA and GapB of chloroplast glyceraldehyde-3-phosphate dehydrogenase from pea and spinach

    Get PDF
    Chloroplast glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is composed of two different subunits, GapA and GapB. cDNA clones containing the entire coding sequences of the cytosolic precursors for GapA from pea and for GapB from pea and spinach have been identified, sequenced and the derived amino acid sequences have been compared to the corresponding sequences from tobacco, maize and mustard. These comparisons show that GapB differs from GapA in about 20% of its amino acid residues and by the presence of a flexible and negatively charged C-terminal extension, possibly responsible for the observed association of the enzyme with chloroplast envelopes in vitro. This C-terminal extension (29 or 30 residues) may be susceptible to proteolytic cleavage thereby leading to a conversion of chloroplast GAPDH isoenzyme I into isoenzyme II. Evolutionary rate comparisons at the amino acid sequence level show that chloroplast GapA and GapB evolve roughly two-fold slower than their cytosolic counterpart GapC. GapA and GapB transit peptides evolve about 10 times faster than the corresponding mature subunits. They are relatively long (68 and 83 residues for pea GapA and spinach GapB respectively) and share a similar amino acid framework with other chloroplast transit peptides
    • …
    corecore