2,692 research outputs found

    Impact of the Nuclear Modification of the Gluon Densities on J/Psi production in pPb collisions at sqrt(s_NN) = 5 TeV

    Full text link
    We update our previous studies of nuclear-matter effects on J/Psi production in proton-nucleus for the recent LHC pPb runs at sqrt(s_NN)=5 TeV. We have analysed the effects of the modification of the gluon PDFs in nucleus, using an exact kinematics for a 2->2 process, namely g+g->J/Psi+g as expected from LO pQCD. This allows to constrain the transverse-momentum while computing the nuclear modification factor for different rapidities, unlike with the usual simplified kinematics. Owing to the absence of measurement in pp collisions at the same sqrt(s_NN) and owing to the expected significant uncertainties in yield interpolations which would hinder definite interpretations of nuclear modification factor --R_pPb--, we have derived forward-to-backward and central-to-peripheral yield ratios in which the unknown proton-proton yield cancel. These have been computed without and with a transverse-momentum cut, e.g. to comply with the ATLAS and CMS constraints in the central-rapidity region.Comment: 5 pages, 16 figures, LaTeX. v2: predictions on R_CP and 3 references added; introduction slightly extende

    J/\psi\ and \psi' production in proton(deuteron)-nucleus collisions: lessons from RHIC for the proton-lead LHC run

    Full text link
    We study the impact of different cold nuclear matter effects both on J/\psi\ and \psi' production, among them the modification of the gluon distribution in bound nucleons, commonly known as gluon shadowing, and the survival probability for a bound state to escape the nucleus --the nuclear absorption. Less conventional effects such as saturation and fractional energy loss are also discussed. We pay a particular attention to the recent PHENIX preliminary data on \psi' production in dAu collisions at sqrt{s}=200 GeV, which show a strong suppression for central collisions, 5 times larger than the one obtained for J/\psi\ production at the same energy. We conclude that none of the abovementioned mechanisms can explain this experimental result.Comment: 4 pages, 2 tables, 2 figures, contribution to Rencontres du Vietnam, 'Heavy Ion Collisions in the LHC Era', 15-21 July 2012, Quy Nhon, Vietna

    On the theoretical and experimental uncertainties in the extraction of the J/psi absorption cross section in cold nuclear matter

    Get PDF
    We investigate the cold nuclear matter effects on J/ψJ/\psi production, whose understanding is fundamental to study the quark-gluon plasma. Two of these effects are of particular relevance: the shadowing of the parton distributions and the nuclear absorption of the ccˉc\bar{c} pair. If J/ψJ/\psi's are not produced {\it via} a 2→12 \to 1 process as suggested by recent theoretical works, one has to modify accordingly the way to compute the nuclear shadowing. This naturally induces differences in the absorption cross-section fit to the data. A careful analysis of these differences however requires taking into account the experimental uncertainties and their correlations, as done in this work for ddAu collisions at \sqrtsNN=200\mathrm{GeV}, using several shadowing parametrisations.Comment: 6 pages, 1 table, 3 figures, Submitted to J. Phys. G, talk given at the International Conference on Strangeness in Quark Matter (SQM2009), Buzios, Brasil, Sep. 27 - Oct. 2, 200

    Conserved current for the Cotton tensor, black hole entropy and equivariant Pontryagin forms

    Full text link
    The Chern-Simons lagrangian density in the space of metrics of a 3-dimensional manifold M is not invariant under the action of diffeomorphisms on M. However, its Euler-Lagrange operator can be identified with the Cotton tensor, which is invariant under diffeomorphims. As the lagrangian is not invariant, Noether Theorem cannot be applied to obtain conserved currents. We show that it is possible to obtain an equivariant conserved current for the Cotton tensor by using the first equivariant Pontryagin form on the bundle of metrics. Finally we define a hamiltonian current which gives the contribution of the Chern-Simons term to the black hole entropy, energy and angular momentum.Comment: 13 page

    Detecting Repetitions and Periodicities in Proteins by Tiling the Structural Space

    Full text link
    The notion of energy landscapes provides conceptual tools for understanding the complexities of protein folding and function. Energy Landscape Theory indicates that it is much easier to find sequences that satisfy the "Principle of Minimal Frustration" when the folded structure is symmetric (Wolynes, P. G. Symmetry and the Energy Landscapes of Biomolecules. Proc. Natl. Acad. Sci. U.S.A. 1996, 93, 14249-14255). Similarly, repeats and structural mosaics may be fundamentally related to landscapes with multiple embedded funnels. Here we present analytical tools to detect and compare structural repetitions in protein molecules. By an exhaustive analysis of the distribution of structural repeats using a robust metric we define those portions of a protein molecule that best describe the overall structure as a tessellation of basic units. The patterns produced by such tessellations provide intuitive representations of the repeating regions and their association towards higher order arrangements. We find that some protein architectures can be described as nearly periodic, while in others clear separations between repetitions exist. Since the method is independent of amino acid sequence information we can identify structural units that can be encoded by a variety of distinct amino acid sequences

    Open-beauty production in ppPb collisions at sNN\sqrt{s_{NN}}=5 TeV: effect of the gluon nuclear densities

    Full text link
    We present our results on open beauty production in proton-nucleus collisions for the recent LHC ppPb run at sNN\sqrt{s_{NN}}=5 TeV. We have analysed the effect of the modification of the gluon PDFs in nucleus at the level of the nuclear modification factor. Because of the absence of measurement in pppp collisions at the same energy, we also propose the study of the forward-to-backward yield ratio in which the unknown proton-proton yield cancel. Our results are compared with the data obtained by LHCb collaboration and show a good agreement.Comment: 6 pages, 3 figures, Proceedings IS2013 submitted to Nuclear Physics

    Cauchy–Riemann equations and J-symplectic forms

    Get PDF
    AbstractLet (ÎŁ,j) be a Riemann surface. The almost complex manifolds (M,J) for which the J-holomorphic curves ϕ:Σ→M are of variational type, are characterized. This problem is related to the existence of a vertically non-degenerate closed complex 3-form on Σ×M (see Theorem 4.3 below), which determines a family of J-symplectic structures on (M,J) parametrized by ÎŁ
    • 

    corecore