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Abstract

Let (Σ, j) be a Riemann surface. The almost complex manifolds (M,J ) for which the J -holomorphic curves φ:Σ → M are of
variational type, are characterized. This problem is related to the existence of a vertically non-degenerate closed complex 3-form
on Σ × M (see Theorem 4.3 below), which determines a family of J -symplectic structures on (M,J ) parametrized by Σ .
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction and preliminaries

Below we study the global aspects related to the variational character of Cauchy–Riemann equations from the
Hamiltonian point of view. In the local setting, the solution to the problem under consideration here is particu-
larly simple (see [8]): Cauchy–Riemann equations for holomorphic maps φ: C → C

k are variational if and only if
k is even. The global version of this statement leads one to characterize when the space of J -holomorphic curves
φ: (Σ, j) → (M,J ) from a Riemann surface into an almost complex manifold, coincides with the space of extremals
of a variational principle, i.e. when the Cauchy–Riemann equations can be considered as the Euler-Lagrange equa-
tions of a Lagrangian density. We show (see Theorem 4.3 and Remark 4.4) that the solution to this problem is closely
related to the existence of a holomorphic family of J -symplectic structures on (M,J ) parametrized by Σ .

We recall that the inverse problem of the calculus of variations consists in the characterization of the systems
of differential equations that are ‘equivalent’ to the Euler–Lagrange equations E(L) of a Lagrangian L. From the
early work [4] by J. Douglas (also see [9]), two ways of defining the notion of equivalence in dealing with such
a characterization have been considered. The first one (e.g., see [2,10,12]), which is better formulated in terms of
the Lagrangian formalism, is to consider the system of differential equations as being the components of a certain
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differential operator D and to ask whether a Lagrangian L exists such that D = E(L). The second way, more adapted
to the Hamiltonian formalism, is to consider linear combinations of the given equations with suitable variational
multipliers and then, to ask whether the new differential equations coincide with the Euler–Lagrange equations of a
Lagrangian; for example, see [1]. In this paper we apply the second method to the Cauchy–Riemann equations.

Next, we recall the definition of a module of variational type in the Hamiltonian formulation of the inverse problem
of the variational calculus for first-order partial differential equations (e.g., see [7]); namely,

Definition 1.1. Let p:M → N be a fibred manifold, i.e., p is a surjective submersion. A C∞(M)-module M ⊂
Ωn(M) is said to be of variational type if there exists a closed (n + 1)-form Ω on M such that M coincides with the
image of the map Xv(M) → Ωn(M), X �→ X�Ω , where Xv(M) denotes the space of p-vertical vector fields on M .

A differential 2-form on C × C
k is called a Cauchy–Riemann form if it belongs to the module spanned over

C∞(C × C
k) by the forms

duα ∧ dx − dvα ∧ dy, duα ∧ dy + dvα ∧ dx, α = 1, . . . , k,

where z = x + iy is the complex coordinate in C and wα = uα + ivα are the complex coordinates in C
k . We denote

this module by CR(C,C
k).

From the identity

dwα ∧ dz = (duα ∧ dx − dvα ∧ dy) + i(duα ∧ dy + dvα ∧ dx),

we conclude that the Cauchy–Riemann forms are the real and imaginary parts of the forms fαdwα ∧dz, fα ∈ C∞(C×
C

k,C).
Taking the following equations:(

∂ϕα

∂x
− ∂ψα

∂y

)
dx ∧ dy = φ∗(duα ∧ dy + dvα ∧ dx),(

∂ϕα

∂y
+ ∂ψα

∂x

)
dx ∧ dy = φ∗(−duα ∧ dx + dvα ∧ dy),

into account, we conclude that a smooth map φ: C → C
k , with components φα = ϕα + iψα , is holomorphic if and

only if φ∗(ω) = 0 for every Cauchy–Riemann form ω ∈ CR(C,C
k).

In the global setting, i.e., for J -holomorphic maps from a Riemann surface (Σ, j) into an almost complex manifold
(M,J ) the solution to the problem of the variational character of Cauchy–Riemann equations, is more complex. In
fact, it is related to the existence of J -symplectic structures on M , as proved in Theorem 4.3 below.

If k is even, say k = 2r , then the module CR(C,C
k) is proved to be variational by means of the 3-form on C × C

k

given by (see [8]),

Ω =
(

r∑
α=1

duα ∧ dur+α −
r∑

α=1

dvα ∧ dvr+α

)
∧ dx −

(
r∑

α=1

duα ∧ dvr+α +
r∑

α=1

dvα ∧ dur+α

)
∧ dy.

Clearly, Ω = dΘ , where

Θ = ∂L

∂ur+α
x

θr+α ∧ dy − ∂L

∂ur+α
y

θr+α ∧ dx + ∂L

∂vr+α
x

ηr+α ∧ dy − ∂L

∂vr+α
y

ηr+α ∧ dx + Ldx ∧ dy

is the Poincaré–Cartan form of the Lagrangian

L =
r∑

α=1

(−uαur+α
y + vαvr+α

y − uαvr+α
x − vαur+α

x ),

and θα = duα − uα
xdx − uα

ydy, ηα = dvα − vα
x dx − vα

y dy are the standard contact 1-forms on the first jet bundle

J 1(C,C
k). Also note that the Euler–Lagrange equations of L coincide with Cauchy–Riemann equations.

The main goal of this paper is to obtain the intrinsic properties of such a form Ω in the case of an arbitrary almost
complex structure.
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2. J -symplectic structures

Let V be an R-vector space of dimension n endowed with a complex structure J ; i.e., J :V → V is an endomor-
phism such that J 2 = −1. As usual (e.g., see [11, IX, §1]), we set V c = V ⊗R C, V 1,0 = ker(J − i), V 0,1 = ker(J + i),
and, similarly, for the dual space, V1,0 = (V ∗)1,0, V0,1 = (V ∗)0,1. Taking account of the canonical decomposition of a
complex-valued R-linear form into a J -linear form and a J -antilinear form, we obtain (cf. [11, IX, Proposition 1.7])∧r

V ∗c = ⊕
p+q=r

∧p,q
V ∗c , where

∧p,q
V ∗c = ∧p

V1,0 ∧ ∧q
V0,1 is the space of forms of type (p, q), or even,

the space of forms p times J -linear, q times J -antilinear. In particular, the forms of type (p,0) are the J -multilinear
p-forms; that is, the elements in

∧p
V1,0.

Proposition 2.1. We have

(a) If ω = ω1 + iω2 ∈ ∧p
V ∗c , with ω1,ω2 ∈ ∧p

V ∗, then ω is of type (p,0) if and only if x�ω2 = −Jx�ω1, ∀x ∈ V .
(b) If ω ∈ ∧p

V ∗c is of type (p,0) and ω1 = Re(ω), then for every x ∈ V we have x�ω = x�ω1 − i(J x)�ω1. In
particular, ker(ω) = ker(ω1) ∩ J ker(ω1). If p > 1, J ker(ω1) = ker(ω1); hence ker(ω) = ker(ω1).

(c) If ω1 ∈ ∧p
V ∗, then an element ω ∈ ∧p

V ∗c of type (p,0) exists such that ω1 = Re(ω) if and only if (Jx)�x�ω1 =
0, ∀x ∈ V .

Definition 2.2. A J -symplectic structure on (V ,J ) is a non-degenerate form ω ∈ ∧2,0
V ∗c .

Remark 2.3. By virtue of Proposition 2.1, ω decomposes as ω = ω1 + iω2, where ω1,ω2 ∈ ∧2
V ∗ and ω2(x, y) =

−ω1(Jx, y), ω1(Jx, x) = 0, ∀x ∈ V . Conversely, given ω1 ∈ ∧2
V ∗ satisfying ω1(Jx, x) = 0, ∀x ∈ V , then the

2-form defined by ω(x, y) = ω1(x, y) − iω1(Jx, y), is J -bilinear.
Moreover, as ker(ω) = ker(ω1), the form ω is non-degenerate if and only if ω1 is non-degenerate.

Remark 2.4. If V admits a complex structure J , then k = dimR V = 2 dimC(V ,J ) is even. In addition, if (V ,J )

admits a J -symplectic structure ω, then as ω is a J -complex non-degenerate 2-form the complex dimension of (V ,J )

must also be even, i.e., dimC(V ,J ) = 2r ; hence dimR V = 4r .

Let (M,J ) be an almost-complex manifold. The sheaf of germs of smooth sections of the vector bundles
∧p

T ∗cM ,∧p,q
T ∗cM are denoted by Ep

M , Ep,q
M , respectively.

Remark 2.5. Assume ω ∈ Ep(M), with ω = ω1 + iω2, ω1,ω2 ∈ Ωp(M). Then dω = 0 if and only if dω1 = dω2 = 0.
Furthermore, if ω ∈ Ep,0(M), then we have ω2(X,Y, . . .) = −ω1(JX,Y, . . .), and hence ω is completely determined
by ω1. Taking this fact into account we could be led to think that dω1 = 0 implies dω = 0, but this is not the case. For
example, if we set ω = z̄dz, then dω = dz̄ ∧ dz = 2i dx ∧ dy; hence dω1 = 0, but dω �= 0.

Definition 2.6. A J -symplectic form on M is a non-degenerate closed 2-form ω ∈ E2,0(M).

Remark 2.7. If J is integrable, then every J -symplectic form is holomorphic, and we recover the definition of a
complex symplectic structure given in [3, §14.14]. We also recall (see [3, Proposition 14.15]) that every hyperkählerian
manifold admits a canonical J -symplectic form.

3. Two spaces of complex forms on (Σ,j) × (M,J)

Let (M,J ) be a almost-complex manifold and let (Σ, j) be a Riemann surface. We recall that j is integrable (e.g.,
see [5, p. 126]). We want to study the variational structure on the space of J -holomorphic curves, i.e., smooth maps
φ:Σ → M such that φ∗ ◦ j = J ◦ φ∗ (e.g., see [6]).

Let π1:Σ × M → Σ , π2:Σ × M → M be the canonical projections onto the factors. We identify the sections of
π1 to the maps Σ → M . For the sake of simplicity, sometimes we denote by the same symbol a differential form on
Σ or on M and its pull-back to Σ × M .
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For every pair of integers s, t such that 0 � s � 2, 0 � t , let Ws,t
Σ×M ⊂ E s+t

Σ×M be the subsheaf of germs of complex
valued (s + t)-forms on Σ × M , which are s-horizontal with respect to π1 and t-horizontal with respect to π2;
precisely, Ws,t

Σ×M = π∗
1 E s

Σ ∧ π∗
2 E t

M . For every ω ∈ Ws,t
Σ×M , there exist unique germs of differential forms d1ω ∈

Ws+1,t
Σ×M , d2ω ∈Ws,t+1

Σ×M such that, dω = d1ω + d2ω.
In what follows, we denote by Ws,t , Ep,q the space of global sections of Ws,t , Ep,q , respectively; i.e., Ws,t =

Ws,t (Σ × M), Ep,q = Ep,q(Σ × M).

3.1. The space W 0,p+1 ∩ Ep+1,0

Above we have considered two bigraduations in the space of complex valued differential forms on Σ × M : The
C-linear-C-antilinear bigraduation, denoted by E r

Σ×M = ⊕
r=p+q E

p,q
Σ×M , and the π1-horizontal-π2-horizontal bigrad-

uation, denoted by E r
Σ×M = ⊕

r=s+t W
s,t
Σ×M . As dimC Σ = 1, we have

Ep+1,0
Σ×M = (

W0,p+1
Σ×M ∩ Ep+1,0

Σ×M

) ⊕ (
W1,p

Σ×M ∩ Ep+1,0
Σ×M

)
.

The elements in W 0,p+1 ∩ Ep+1,0 are the sections of the sheaf π∗
2 E

p+1
M , i.e., the J -multilinear (p + 1)-forms on

M with coefficients on Σ × M .
For each z ∈ Σ , let ιz:M → Σ × M be the immersion ιz(x) = (z, x).
If α ∈ W 0,p+1 ∩ Ep+1,0, then we set αz = ι∗zα ∈ Ep+1,0(M). Hence, the form α can be viewed as a family αz ∈

Ep+1,0(M) of (p + 1)-forms on each fiber (π1)
−1(z), depending smoothly on z ∈ Σ .

By taking the differential of α ∈ W 0,p+1 ∩Ep+1,0 we obtain dα = d1α + d2α, with d1α ∈ W 1,p+1, d2α ∈ W 0,p+2,
where d1, d2 are exterior differentials of factor Σ and M . Locally, we have

d1α = dz ∧ ∂α

∂z
+ dz̄ ∧ ∂α

∂z̄
,

∂α

∂z
,
∂α

∂z̄
∈ W 0,p+1 ∩ Ep+1,0,

where ∂α/∂z, ∂α/∂z̄ are uniquely determined by this property. Hence, d1α = 0 if and only if, ∂α/∂z = ∂α/∂z̄ = 0.
In other words, d1α = 0 is equivalent to saying that α is independent of z ∈ Σ and hence, α = (π2)

∗α′ for some
α′ ∈ Ep+1,0(M).

As for d2α, we have dαz = ι∗z(dα) = ι∗z(d2α)+ ι∗z(d1α) = ι∗z(d2α), because ι∗zdz = ι∗zdz̄ = 0, and since d2α belongs
to W 0,p+2, we conclude that d2α = 0 if and only if dαz = 0, ∀z ∈ Σ . Hence, α ∈ W 0,p+1 ∩ Ep+1,0 is closed if and
only if α = (π2)

∗α′ for some α′ ∈ Ep+1,0(M) with dα′ = 0.

3.2. The space W 1,p ∩ Ep+1,0

Next, we consider the space W 1,p ∩ Ep+1,0; i.e., the J -multilinear complex valued 1-horizontal (p + 1)-forms on
Σ × M .

If (U, z) is a holomorphic chart on Σ and ω ∈ W 1,p ∩ Ep+1,0, for all (z, x) ∈ U × M we have ω|U×M(z, x) =
μ(z, x)∧ dz, where μ ∈ W 0,p ∩Ep,0 is uniquely determined by this property. We refer to the expression above as the
‘local representation of ω with respect to (U, z)’, and we write it as ω|U = μ ∧ dz.

Definition 3.1. A form ω ∈ W 1,p ∩ Ep+1,0 is said to be vertically non-degenerate if ker(ω) ∩ ker(π1)∗ = 0.

With the previous notations, the definition above is equivalent to saying kerμz = 0, ∀z ∈ U and any chart in Σ .
Taking the differential of ω, and recalling that μ belongs to W 0,p ∩ Ep,0, we have

dω|U = dμ ∧ dz = d2μ ∧ dz + d1μ ∧ dz = d2μ ∧ dz + ∂μ

∂z̄
dz̄ ∧ dz,

with d2μ ∈ W 0,p+1, d1μ ∈ W 1,p . Hence ω is closed if and only if for any chart (U, z) we have d2μ = 0, ∂μ/∂z̄ = 0,
on U ; or equivalently, dμz = 0, ∂μ/∂z̄ = 0, ∀z ∈ U .
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Remark 3.2. From the previous equations, it follows that a closed form ω in W1,p ∩ Ep+1,0 can be interpreted as
a holomorphic (i.e., ∂μ/∂z̄ = 0) 1-parameter family of closed 2-forms (μz) on M . If we consider the local rep-
resentations of ω with respect to two local charts (U, z) and (U ′, z′) of Σ , then we obtain μ ∧ dz = μ′ ∧ dz′ =
(∂z′/∂z)μ′ ∧ dz, and so, μ = (∂z′/∂z)μ′. Hence μ transforms itself as a section of a vector bundle over Σ with fiber
Zp,0(M) ⊂ Ep,0(M), the set of closed p-forms of type (p,0) on M . If (M,J ) is a compact complex manifold, this
space is of finite dimension by virtue of the finiteness theorem for elliptic complexes (e.g., see [13, Example 5.5]) and
the condition ∂μ/∂z̄ = 0 means that ω corresponds to a holomorphic section of this bundle.

Proposition 3.3. For every ω ∈W1,p ∩ Ep+1,0 the following conditions are equivalent:

(a) dω = 0,
(b) d(Re(ω)) = 0.

Proof. Obviously, (a) implies (b). Conversely, assume (b) holds. If (U, z) is a local coordinate domain on Σ and the
local representation of ω with respect to (U, z), is ω|U = μ ∧ dz, then we have

dω = dμ ∧ dz = d2μ ∧ dz + ∂μ

∂z̄
∧ dz̄ ∧ dz,

with d2μ ∈ W0,p+1 and ∂μ/∂z̄ ∈W0,p ∩ Ep,0. Hence

0 = d
(
Re(ω|U)

)
= Re(dω|U)

= Re(d2μ ∧ dz) + Re

(
∂μ

∂z̄
∧ dz̄ ∧ dz

)
.

Hence Re(d2μ ∧ dz) = Re(∂μ/∂z̄ ∧ dz̄ ∧ dz) = 0. Moreover, we have

0 = Re(d2μ ∧ dz) = Re(d2μ) ∧ dx − Im(d2μ) ∧ dy.

Hence Re(d2μ) = Im(d2μ) = 0, and then, d2μ = 0. In addition, we have

0 = Re

(
∂μ

∂z̄
∧ dz̄ ∧ dz

)

= −2 Im

(
∂μ

∂z̄

)
dx ∧ dy.

Hence Im(∂μ/∂z̄) = 0. As ∂μ/∂z̄ ∈ E2,0, this implies ∂μ/∂z̄ = 0. Hence, for every chart (U, z) we have dω|U = 0
and consequently dω = 0. �
4. Cauchy–Riemann forms

Definition 4.1. The 2-forms in CR(Σ,M) = {Re(β): β ∈ W 1,1 ∩ E2,0} are called the Cauchy–Riemann forms for
maps from Σ to M .

Proposition 4.2. Let φ:Σ → M be a smooth map. The following conditions are equivalent:

(a) φ is J -holomorphic.
(b) φ∗(α) ∈ E1,0(Σ), ∀α ∈ E1,0(M).
(c) φ∗(β) = 0, ∀β ∈ W 1,1 ∩ E2,0.

Hence, a smooth map φ:Σ → M is J -holomorphic if and only if φ∗(β) = 0, ∀β ∈ CR(Σ,M).

Proof. (a) �⇒ (b). Let φ be J -holomorphic. For every β ∈ E1,0(M), X ∈ X(Σ), we have φ∗(β)(jX) = β(φ∗(jX)) =
β(Jφ∗(X)) = iβ(φ∗(X)) = iφ∗(β)(X). Hence φ∗(β) ∈ E1,0(Σ).
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(b) �⇒ (a). Assume φ is not J -holomorphic. Then, there exist z ∈ Σ , Xz ∈ TzΣ such that Y = φ∗(jXz) −
Jpφ∗(Xz) �= 0. Accordingly, there exists βp ∈ (T1,0)zΣ such that βz(Y ) �= 0, and by extending the covector βz to
a form β ∈ E1,0(M) and the tangent vector Xz to a vector field X ∈ X(Σ), we have

φ∗(β)(jX) − iφ∗(β)(X) = β
(
φ∗(jX) − Jφ∗(X)

) �= 0,

and therefore, φ∗(β) /∈ E1,0(Σ).
(b) ⇐⇒ (c). Let β|U = μ ∧ dz, μ ∈ W0,1 ∩ E1,0, be the local representation of β ∈ W 1,1 ∩ E2,0 with respect to a

local coordinate domain (U, z) in Σ . We have φ|∗U(β|U) = 0 if and only if φ|∗U(μ) ∈ E1,0(Σ). From this, it follows
the equivalence between (b) and (c). �
Theorem 4.3. The Cauchy–Riemann forms CR(Σ,M) (see Definition 4.1) for maps from Σ into M are of variational
type according to Definition 1.1, if and only if there exists a closed and vertically non-degenerate 3-form ω ∈ W 1,2 ∩
E3,0 (see Definition 3.1).

Moreover, if ω is exact, say ω = dΘ for certain Θ ∈ Ω2(Σ × M), then the horizontal component of Θ is a
Lagrangian density whose Euler–Lagrange equations are the Cauchy–Riemann equations.

Proof. If a closed and vertically non-degenerate form ω ∈ W 1,2 ∩ E3,0 exists, then we define Ω = Re(ω). Certainly
Ω is closed. Furthermore, as ω is vertically non-degenerate, the complex vector-bundle homomorphism

V (π1) ∼= π∗
2 T (M) → π∗

1 T1,0(Σ) ⊗ π∗
2 T1,0(M),

X �→ X�ω,

is injective and since rk(π∗
1 T1,0(Σ)⊗π∗

2 T1,0(M)) = rkC(T M), it is a isomorphism. Hence, for every β ∈ W 1,1 ∩E2,0

there exists a vertical vector field Xβ such that β = Xβ�ω. By taking the real part on both sides of this equation, we
have Re(β) = Xβ�Re(ω) = Xβ�Ω , and we can conclude the first part of the proof.

Conversely, assume Ω is a variational form for the Cauchy–Riemann equations. If (U, z) is a chart in Σ , and
β ∈ W 1,1 ∩ E2,0, then we have β|U = α ∧ dz, with α ∈ W 0,1 ∩ E1,0.

Clearly the map Φ:π∗
2 T1,0M → ∧2

T ∗(U × M), α �→ Re(α ∧ dz) is injective. From the assumption, the image

of the map π∗
2 T M → ∧2

T ∗(U × M), X �→ X�Ω contains imΦ , and since rk(imΦ) = rk(T1,0M) = rkC(T M), we
conclude that the latter map must also be injective. In particular, the map X �→ αX , where αX is uniquely characterized
by X�Ω = Re(αX ∧ dz), is an isomorphism from the space of π1-vertical vector fields onto W 0,1 ∩ E1,0.

If X is a π1-vertical vector field, letting α1X = Re(αX), α2X = Im(αX), we have X�Ω = Re(αX ∧ dz) = α1X ∧
dx − α2X ∧ dy. We conclude that Ω can be written as Ω = μ1 ∧ dx − μ2 ∧ dy = Re((μ1 + iμ2) ∧ dz). We claim
that μ = μ1 + iμ2 ∈ W 0,2 ∩ E2,0 is, in fact, of type (2,0). Actually, for any π1-vertical vector fields X,Y , we have
Y�X�μ2 = Y�α2X = −(JY )�α1X = −(JY )�X�μ1; that is, Y�μ2 = −(JY )�μ1 and μ is of type (2,0) by virtue of
Proposition 2.1.

Let ω|U = μ∧dz be the local representation of a form ω ∈ W 1,2 ∩E3,0 with respect to (U, z). As X�μ1 = α1X = 0
implies αX = 0 by virtue of Proposition 2.1-(a), and hence X = 0, we conclude that kerμ = kerμ1 = 0. So, ω is
vertically non-degenerate and, by Proposition 3.3, we obtain dω = 0.

Finally, the last part of the statement directly follows from the results in [7]. �
Remark 4.4. Let Z2,0

J (M) = {ω ∈ Z2,0(M) : ω(JX,Y ) = iω(X,Y )}. The space SJ (M) of J -symplectic structures

on M is a—possibly empty—open subset in Z2,0
J (M). In particular, a necessary condition for CR(Σ,M) to be of

variational type is that (M,J ) should admit a J -symplectic structure. Assuming this and taking Remark 3.2 into
account, we can interpret a closed and vertically non-degenerate 3-form ω ∈ W 1,2 ∩ E3,0 as a holomorphic section of
a bundle B(Σ,M) over Σ with fiber SJ (M). Hence CR(Σ,M) is of variational type if and only if this bundle admits
a holomorphic section.

Example 4.5. 1) Suppose that Σ admits a non-vanishing holomorphic 1-form α, and that M admits a J -symplectic
structure γ . Then α ∧ γ (or more precisely π∗

1 α ∧ π∗
2 γ ) satisfies the conditions of the theorem above and hence

CR(Σ,M) is of variational type.
2) Every hyperkählerian manifold admits a J -symplectic form; see Remark 2.7. Also see [3, 14.25, 14.28, 14.33].
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3) If M is a compact, connected, complex manifold of complex dimension 2 admitting a holomorphic volume
form, then SJ (M) ∼= C \ 0 and hence, B(Σ,M) is the bundle of complex linear coframes of Σ . Accordingly, if Σ is
compact, then B(Σ,M) admits a holomorphic section if and only if Σ is a complex torus.
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