22,061 research outputs found

    Effects of a CPT-even and Lorentz-violating nonminimal coupling on the electron-positron scattering

    Get PDF
    We propose a new \emph{CPT}-even and Lorentz-violating nonminimal coupling between fermions and Abelian gauge fields involving the CPT-even tensor (KF)μναβ(K_{F})_{\mu\nu\alpha\beta} of the standard model extension. We thus investigate its effects on the cross section of the electron-positron scattering by analyzing the process e++eμ++μe^{+}+e^{-}\rightarrow\mu^{+}+\mu^{-}. Such a study was performed for the parity-odd and parity-even nonbirefringent components of the Lorentz-violating (KF)μναβ(K_{F})_{\mu\nu\alpha\beta} tensor. Finally, by using experimental data available in the literature, we have imposed upper bounds as tight as 1012(eV)110^{-12}(eV)^{-1} on the magnitude of the CPT-even and Lorentz-violating parameters while nonminimally coupled.Comment: LaTeX2e, 06 pages, 01 figure

    Riccati-type equations, generalised WZNW equations, and multidimensional Toda systems

    Full text link
    We associate to an arbitrary Z\mathbb Z-gradation of the Lie algebra of a Lie group a system of Riccati-type first order differential equations. The particular cases under consideration are the ordinary Riccati and the matrix Riccati equations. The multidimensional extension of these equations is given. The generalisation of the associated Redheffer--Reid differential systems appears in a natural way. The connection between the Toda systems and the Riccati-type equations in lower and higher dimensions is established. Within this context the integrability problem for those equations is studied. As an illustration, some examples of the integrable multidimensional Riccati-type equations related to the maximally nonabelian Toda systems are given.Comment: LaTeX2e, 18 page

    Hysteresis and re-entrant melting of a self-organized system of classical particles confined in a parabolic trap

    Full text link
    A self-organized system composed of classical particles confined in a two-dimensional parabolic trap and interacting through a potential with a short-range attractive part and long-range repulsive part is studied as function of temperature. The influence of the competition between the short-range attractive part of the inter-particle potential and its long-range repulsive part on the melting temperature is studied. Different behaviors of the melting temperature are found depending on the screening length (κ\kappa) and the strength (BB) of the attractive part of the inter-particle potential. A re-entrant behavior and a thermal induced phase transition is observed in a small region of (κ,B\kappa,B)-space. A structural hysteresis effect is observed as a function of temperature and physically understood as due to the presence of a potential barrier between different configurations of the system.Comment: 8 pages, 6 figure

    Radiative generation of the CPT-even gauge term of the SME from a dimension-five nonminimal coupling term

    Full text link
    In this letter we show for the first time that the usual CPT-even gauge term of the standard model extension (SME) can be radiatively generated, in a gauge invariant level, in the context of a modified QED endowed with a dimension-five nonminimal coupling term recently proposed in the literature. As a consequence, the existing upper bounds on the coefficients of the tensor (KF)(K_{F}) can be used improve the bounds on the magnitude of the nonminimal coupling, λ(KF),\lambda(K_{F}), by the factors 10510^{5} or 1025.10^{25}. The nonminimal coupling also generates higher-order derivative contributions to the gauge field effective action quadratic terms.Comment: Revtex style, two columns, 6 pages, revised final version to be published in the Physics Letters B (2013

    Two-component mixture of charged particles confined in a channel: melting

    Full text link
    The melting of a binary system of charged particles confined in a {\it quasi}-one-dimensional parabolic channel is studied through Monte Carlo simulations. At zero temperature the particles are ordered in parallel chains. The melting is anisotropic and different melting temperatures are obtained according to the spatial direction, and the different types of particles present in the system. Melting is very different for the single-, two- and four-chain configurations. A temperature induced structural phase transition is found between two different four chain ordered states which is absent in the mono-disperse system. In the mixed regime, where the two types of particles are only slightly different, melting is almost isotropic and a thermally induced homogeneous distribution of the distinct types of charges is observed.Comment: To appear in Journal of Physics: condensed matter ; (13 pages, 12 figures

    Two Novel CMY-2-Type β-Lactamases Encountered in Clinical Escherichia Coli Isolates

    Get PDF
    BACKGROUND: Chromosomally encoded AmpC β-lactamases may be acquired by transmissible plasmids which consequently can disseminate into bacteria lacking or poorly expressing a chromosomal bla AmpC gene. Nowadays, these plasmid-mediated AmpC β-lactamases are found in different bacterial species, namely Enterobacteriaceae, which typically do not express these types of β-lactamase such as Klebsiella spp. or Escherichia coli. This study was performed to characterize two E. coli isolates collected in two different Portuguese hospitals, both carrying a novel CMY-2-type β-lactamase-encoding gene. FINDINGS: Both isolates, INSRA1169 and INSRA3413, and their respective transformants, were non-susceptible to amoxicillin, amoxicillin plus clavulanic acid, cephalothin, cefoxitin, ceftazidime and cefotaxime, but susceptible to cefepime and imipenem, and presented evidence of synergy between cloxacilin and cefoxitin and/or ceftazidime. The genetic characterization of both isolates revealed the presence of bla CMY-46 and bla CMY-50 genes, respectively, and the following three resistance-encoding regions: a Citrobacter freundii chromosome-type structure encompassing a blc-sugE-bla CMY-2-type -ampR platform; a sul1-type class 1 integron with two antibiotic resistance gene cassettes (dfrA1 and aadA1); and a truncated mercury resistance operon. CONCLUSIONS: This study describes two new bla CMY-2-type genes in E. coli isolates, located within a C. freundii-derived fragment, which may suggest their mobilization through mobile genetic elements. The presence of the three different resistance regions in these isolates, with diverse genetic determinants of resistance and mobile elements, may further contribute to the emergence and spread of these genes, both at a chromosomal or/and plasmid level

    Miniportfólios.

    Get PDF
    Esta publicação foi desenvolvida com o objetivo de capacitar professores de Ensino Fundamental na elaboração e execução de miniprojetos focados nos princípios da Agroecologia para serem realizados em sala de aula com estudantes. O solo foi escolhido como destaque nesta publicação, pois é local onde existe a grande biodiversidade, espaço por excelência da decomposição de microrganismos e ciclagem de nutrientes, além de ser um componente essencial para o crescimento das plantas. No primeiro volume mostra-se a observação dos processos que ocorrem na natureza, enquanto que no segundo volume, apresenta-se conceitos de manejo e produção de material vegetal, reciclagem de resíduos orgânicos, a biota do solo como agente decompositor e seu manejo, a germinação e o crescimento vegetal com uma abordagem de produção de mudas.bitstream/item/128500/1/2015-CNPAB-MINIPORTFOLIOS-PASTA-ENCARTES1.pd

    New type II Cepheids from VVV data towards the Galactic center

    Full text link
    The Galactic center (GC) is the densest region of the Milky Way. Variability surveys towards the GC potentially provide the largest number of variable stars per square degree within the Galaxy. However, high stellar density is also a drawback due to blending. Moreover, the GC is affected by extreme reddening, therefore near infrared observations are needed. We plan to detect new variable stars towards the GC, focusing on type II Cepheids (T2Cs) which have the advantage of being brighter than RR Lyrae stars. We perform parallel Lomb-Scargle and Generalized Lomb-Scargle periodogram analysis of the KsK_s-band time series of the VISTA variables in the Via Lactea survey, to detect periodicities. We employ statistical parameters to clean our sample. We take account of periods, light amplitudes, distances, and proper motions to provide a classification of the candidate variables. We detected 1,019 periodic variable stars, of which 164 are T2Cs, 210 are Miras and 3 are classical Cepheids. We also found the first anomalous Cepheid in this region. We compare their photometric properties with overlapping catalogs and discuss their properties on the color-magnitude and Bailey diagrams. We present the most extensive catalog of T2Cs in the GC region to date. Offsets in E(JKsJ-K_s) and in the reddening law cause very large (\sim1-2 kpc) uncertainties on distances in this region. We provide a catalog which will be the starting point for future spectroscopic surveys in the innermost regions of the Galaxy.Comment: A&A, accepte

    Transition from single-file to two-dimensional diffusion of interacting particles in a quasi-one-dimensional channel

    Full text link
    Diffusive properties of a monodisperse system of interacting particles confined to a \textit{quasi}-one-dimensional (Q1D) channel are studied using molecular dynamics (MD) simulations. We calculate numerically the mean-squared displacement (MSD) and investigate the influence of the width of the channel (or the strength of the confinement potential) on diffusion in finite-size channels of different shapes (i.e., straight and circular). The transition from single-file diffusion (SFD) to the two-dimensional diffusion regime is investigated. This transition (regarding the calculation of the scaling exponent (α\alpha) of the MSD tα\propto t^{\alpha}) as a function of the width of the channel, is shown to change depending on the channel's confinement profile. In particular the transition can be either smooth (i.e., for a parabolic confinement potential) or rather sharp/stepwise (i.e., for a hard-wall potential), as distinct from infinite channels where this transition is abrupt. This result can be explained by qualitatively different distributions of the particle density for the different confinement potentials.Comment: 13 pages, 11 figure

    Magnetized Accretion-Ejection Structures: 2.5D MHD simulations of continuous Ideal Jet launching from resistive accretion disks

    Full text link
    We present numerical magnetohydrodynamic (MHD) simulations of a magnetized accretion disk launching trans-Alfvenic jets. These simulations, performed in a 2.5 dimensional time-dependent polytropic resistive MHD framework, model a resistive accretion disk threaded by an initial vertical magnetic field. The resistivity is only important inside the disk, and is prescribed as eta = alpha_m V_AH exp(-2Z^2/H^2), where V_A stands for Alfven speed, H is the disk scale height and the coefficient alpha_m is smaller than unity. By performing the simulations over several tens of dynamical disk timescales, we show that the launching of a collimated outflow occurs self-consistently and the ejection of matter is continuous and quasi-stationary. These are the first ever simulations of resistive accretion disks launching non-transient ideal MHD jets. Roughly 15% of accreted mass is persistently ejected. This outflow is safely characterized as a jet since the flow becomes super-fastmagnetosonic, well-collimated and reaches a quasi-stationary state. We present a complete illustration and explanation of the `accretion-ejection' mechanism that leads to jet formation from a magnetized accretion disk. In particular, the magnetic torque inside the disk brakes the matter azimuthally and allows for accretion, while it is responsible for an effective magneto-centrifugal acceleration in the jet. As such, the magnetic field channels the disk angular momentum and powers the jet acceleration and collimation. The jet originates from the inner disk region where equipartition between thermal and magnetic forces is achieved. A hollow, super-fastmagnetosonic shell of dense material is the natural outcome of the inwards advection of a primordial field.Comment: ApJ (in press), 32 pages, Higher quality version available at http://www-laog.obs.ujf-grenoble.fr/~fcass
    corecore