40 research outputs found

    Migration and tuberculosis transmission in a middle-income country: a cross-sectional study in a central area of São Paulo, Brazil.

    Get PDF
    BACKGROUND: Little is known about the impact of growing migration on the pattern of tuberculosis (TB) transmission in middle-income countries. We estimated TB recent transmission and its associated factors and investigated the presence of cross-transmission between South American migrants and Brazilians. METHODS: We studied a convenient sample of cases of people with pulmonary TB in a central area of São Paulo, Brazil, diagnosed between 2013 and 2014. Cases with similar restriction fragment length polymorphism (IS6110-RFLP) patterns of their Mycobacterium tuberculosis complex isolates were grouped in clusters (recent transmission). Clusters with both Brazilian and South American migrants were considered mixed (cross-transmission). Risk factors for recent transmission were studied using logistic regression. RESULTS: Isolates from 347 cases were included, 76.7% from Brazilians and 23.3% from South American migrants. Fifty clusters were identified, which included 43% South American migrants and 60.2% Brazilians (odds ratio = 0.50, 95% confidence interval = 0.30-0.83). Twelve cross-transmission clusters were identified, involving 24.6% of all clustered cases and 13.8% of all genotyped cases, with migrants accounting for either an equal part or fewer cases in 11/12 mixed clusters. CONCLUSIONS: Our results suggest that TB disease following recent transmission is more common among Brazilians, especially among those belonging to high-risk groups, such as drug users. Cross-transmission between migrants and Brazilians was present, but we found limited contributions from migrants to Brazilians in central areas of São Paulo and vice versa

    Application of four molecular typing methods for analysis of Mycobacterium fortuitum group strains causing post-mammaplasty infections

    Get PDF
    A cluster of cases of post-augmentation mammaplasty surgical site infections occurred between 2002 and 2004 in Campinas, in the southern region of Brazil. Rapidly growing mycobacteria were isolated from samples from 12 patients. Eleven isolates were identified as Mycobacterium fortuitum and one as Mycobacterium porcinum by PCR-restriction digestion of the hsp65 gene. These 12 isolates, plus six additional M. fortuitum isolates from non-related patients, were typed by pulsed-field gel electrophoresis (PFGE) and three PCR-based techniques: 16S-23S rRNA internal transcribed spacer (ITS) genotyping; randomly amplified polymorphic DNA (RAPD) PCR; and enterobacterial repetitive intergenic consensus (ERIC) PCR. Four novel M. fortuitum allelic variants were identified by restriction analysis of the ITS fragment. One major cluster, comprising six M. fortuitum isolates, and a second cluster of two isolates, were identified by the four methods. RAPD-PCR and ITS genotyping were less discriminative than ERIC-PCR. ERIC-PCR was comparable to PFGE as a valuable complementary tool for investigation of this type of outbreak.Universidade Federal de São Paulo, Escola Paulista Med, Dept Microbiol Imunol & Parasitol, BR-04023062 São Paulo, SP, BrazilFleury Ctr Med Diagnost, São Paulo, BrazilInst Adolfo Lutz Registro, São Paulo, BrazilInst Vozza Med & Diagnose LTDA, Campinas, BrazilCtr Vigilancia Epidemiol Prof Alexandre Vranjac, São Paulo, BrazilUniversidade Federal de São Paulo, Escola Paulista Med, Dept Microbiol Imunol & Parasitol, BR-04023062 São Paulo, SP, BrazilWeb of Scienc

    Is HIV Infection a Risk Factor for Multi-Drug Resistant Tuberculosis? A Systematic Review

    Get PDF
    BACKGROUND:Tuberculosis (TB) is an important cause of human suffering and death. Human immunodeficiency virus (HIV), multi-drug resistant TB (MDR-TB), and extensive drug resistant tuberculosis (XDR-TB) have emerged as threats to TB control. The association between MDR-TB and HIV infection has not yet been fully investigated. We conducted a systematic review and meta-analysis to summarize the evidence on the association between HIV infection and MDR-TB. METHODS AND RESULTS:Original studies providing Mycobacterium tuberculosis resistance data stratified by HIV status were identified using MEDLINE and ISI Web of Science. Crude MDR-TB prevalence ratios were calculated and analyzed by type of TB (primary or acquired), region and study period. Heterogeneity across studies was assessed, and pooled prevalence ratios were generated if appropriate. No clear association was found between MDR-TB and HIV infection across time and geographic locations. MDR-TB prevalence ratios in the 32 eligible studies, comparing MDR-TB prevalence by HIV status, ranged from 0.21 to 41.45. Assessment by geographical region or study period did not reveal noticeable patterns. The summary prevalence ratios for acquired and primary MDR-TB were 1.17 (95% CI 0.86, 1.6) and 2.72 (95% CI 2.03, 3.66), respectively. Studies eligible for review were few considering the size of the epidemics. Most studies were not adjusted for confounders and the heterogeneity across studies precluded the calculation of a meaningful overall summary measure. CONCLUSIONS:We could not demonstrate an overall association between MDR-TB and HIV or acquired MDR-TB and HIV, but our results suggest that HIV infection is associated with primary MDR-TB. Future well-designed studies and surveillance in all regions of the world are needed to better clarify the relationship between HIV infection and MDR-TB

    The Forest behind the Tree: Phylogenetic Exploration of a Dominant Mycobacterium tuberculosis Strain Lineage from a High Tuberculosis Burden Country

    Get PDF
    BACKGROUND: Genotyping of Mycobacterium tuberculosis isolates is a powerful tool for epidemiological control of tuberculosis (TB) and phylogenetic exploration of the pathogen. Standardized PCR-based typing, based on 15 to 24 mycobacterial interspersed repetitive unit-variable number of tandem repeat (MIRU-VNTR) loci combined with spoligotyping, has been shown to have adequate resolution power for tracing TB transmission and to be useful for predicting diverse strain lineages in European settings. Its informative value needs to be tested in high TB-burden countries, where the use of genotyping is often complicated by dominance of geographically specific, genetically homogeneous strain lineages. METHODOLOGY/PRINCIPAL FINDINGS: We tested this genotyping system for molecular epidemiological analysis of 369 M. tuberculosis isolates from 3 regions of Brazil, a high TB-burden country. Deligotyping, targeting 43 large sequence polymorphisms (LSPs), and the MIRU-VNTRplus identification database were used to assess phylogenetic predictions. High congruence between the different typing results consistently revealed the countrywide supremacy of the Latin-American-Mediterranean (LAM) lineage, comprised of three main branches. In addition to an already known RDRio branch, at least one other branch characterized by a phylogenetically informative LAM3 spoligo-signature seems to be globally distributed beyond Brazil. Nevertheless, by distinguishing 321 genotypes in this strain population, combined MIRU-VNTR typing and spoligotyping demonstrated the presence of multiple distinct clones. The use of 15 to 24 loci discriminated 21 to 25% more strains within the LAM lineage, compared to a restricted lineage-specific locus set suggested to be used after SNP analysis. Noteworthy, 23 of the 28 molecular clusters identified were exclusively composed of patient isolates from a same region, consistent with expected patterns of mostly local TB transmission. CONCLUSIONS/SIGNIFICANCE: Standard MIRU-VNTR typing combined with spoligotyping can reveal epidemiologically meaningful clonal diversity behind a dominant M. tuberculosis strain lineage in a high TB-burden country and is useful to explore international phylogenetical ramifications

    The 2021 WHO catalogue of Mycobacterium tuberculosis complex mutations associated with drug resistance: a genotypic analysis.

    Get PDF
    Background: Molecular diagnostics are considered the most promising route to achievement of rapid, universal drug susceptibility testing for Mycobacterium tuberculosis complex (MTBC). We aimed to generate a WHO-endorsed catalogue of mutations to serve as a global standard for interpreting molecular information for drug resistance prediction. Methods: In this systematic analysis, we used a candidate gene approach to identify mutations associated with resistance or consistent with susceptibility for 13 WHO-endorsed antituberculosis drugs. We collected existing worldwide MTBC whole-genome sequencing data and phenotypic data from academic groups and consortia, reference laboratories, public health organisations, and published literature. We categorised phenotypes as follows: methods and critical concentrations currently endorsed by WHO (category 1); critical concentrations previously endorsed by WHO for those methods (category 2); methods or critical concentrations not currently endorsed by WHO (category 3). For each mutation, we used a contingency table of binary phenotypes and presence or absence of the mutation to compute positive predictive value, and we used Fisher's exact tests to generate odds ratios and Benjamini-Hochberg corrected p values. Mutations were graded as associated with resistance if present in at least five isolates, if the odds ratio was more than 1 with a statistically significant corrected p value, and if the lower bound of the 95% CI on the positive predictive value for phenotypic resistance was greater than 25%. A series of expert rules were applied for final confidence grading of each mutation. Findings: We analysed 41 137 MTBC isolates with phenotypic and whole-genome sequencing data from 45 countries. 38 215 MTBC isolates passed quality control steps and were included in the final analysis. 15 667 associations were computed for 13 211 unique mutations linked to one or more drugs. 1149 (7·3%) of 15 667 mutations were classified as associated with phenotypic resistance and 107 (0·7%) were deemed consistent with susceptibility. For rifampicin, isoniazid, ethambutol, fluoroquinolones, and streptomycin, the mutations' pooled sensitivity was more than 80%. Specificity was over 95% for all drugs except ethionamide (91·4%), moxifloxacin (91·6%) and ethambutol (93·3%). Only two resistance mutations were identified for bedaquiline, delamanid, clofazimine, and linezolid as prevalence of phenotypic resistance was low for these drugs. Interpretation: We present the first WHO-endorsed catalogue of molecular targets for MTBC drug susceptibility testing, which is intended to provide a global standard for resistance interpretation. The existence of this catalogue should encourage the implementation of molecular diagnostics by national tuberculosis programmes. Funding: Unitaid, Wellcome Trust, UK Medical Research Council, and Bill and Melinda Gates Foundation
    corecore