261 research outputs found

    Selection of native trees for intercropping with coffee in the Atlantic Rainforest biome

    Get PDF
    A challenge in establishing agroforestry systems is ensuring that farmers are interested in the tree species, and are aware of how to adequately manage these species. This challenge was tackled in the Atlantic Rainforest biome (Brazil), where a participatory trial with agroforestry coffee systems was carried out, followed by a participatory systematisation of the farmers experiences. Our objective was to identify the main tree species used by farmers as well as their criteria for selecting or rejecting tree species. Furthermore, we aimed to present a specific inventory of trees of the Leguminosae family. In order to collect the data, we reviewed the bibliography of the participatory trial, visited and interviewed the farmers and organised workshops with them. The main farmers' criteria for selecting tree species were compatibility with coffee, amount of biomass, production and the labour needed for tree management. The farmers listed 85 tree species; we recorded 28 tree species of the Leguminosae family. Most trees were either native to the biome or exotic fruit trees. In order to design and manage complex agroforestry systems, family farmers need sufficient knowledge and autonomy, which can be reinforced when a participatory methodology is used for developing on-farm agroforestry systems. In the case presented, the farmers learned how to manage, reclaim and conserve their land. The diversification of production, especially with fruit, contributes to food security and to a low cost/benefit ratio of agroforestry systems. The investigated agroforestry systems showed potential to restore the degraded landscape of the Atlantic Rainforest biome

    Pressure Studies on a High-TcT_c Superconductor Pseudogap and Critical Temperatures

    Full text link
    We report simultaneous hydrostatic pressure studies on the critical temperature TcT_c and on the pseudogap temperature TT^* performed through resistivity measurements on an optimally doped high-TcT_c oxide Hg0.82Re0.18Ba2Ca2Cu3O8+δHg_{0.82}Re_{0.18}Ba_2Ca_2Cu_3O_{8+\delta}. The resistivity is measured as function of the temperature for several different applied pressure below 1GPa. We find that both TcT_c and TT^* increases linearly with the pressure. This result demonstrate that the well known intrinsic pressure effect on TcT_c is also present at TT^* and both temperatures are originated by the same superconducting mechanism.Comment: 4 pages and 2 figures in eps, final versio

    Production of fructo-oligosaccharides by Aspergillus ibericus and their chemical characterization

    Get PDF
    A great demand for prebiotics is driving the search for new sources of fructo-oligosaccharides (FOS) producers and for FOS with differentiated functionalities. In the present work, FOS production by a new isolated strain of Aspergillus ibericus was evaluated. The temperature of fermentation and initial pH were optimized in shaken flask to yield a maximal FOS production, through a central composite experimental design. FOS were produced in a one-step bioprocess using the whole cells of the microorganism. The model (R2 = 0.918) predicted a yield of 0.56, experimentally 0.53 ± 0.03 gFOS.ginitial sucrose1 was obtained (37.0 °C and a pH of 6.2). A yield of 0.64 ± 0.02 gFOS.ginitial sucrose1 was obtained in the bioreactor, at 38 h, with a content of 118 ± 4 g.L1 in FOS and a purity of 56 ± 3%. The chemical structure of the FOS produced by A. ibericus was determined by HPLC and NMR. FOS were identified as 1-kestose, nystose, and 1F-fructofuranosylnystose. In conclusion, A. ibericus was found to be a good alternative FOS producer.Clarisse Nobre acknowledges the Portuguese Foundation forScience and Technology (FCT) for her Post-Doc Grant [ref. SFRH/BPD/87498/ 2012] and the project RECI/BBB-EBI/0179/2012 (FCOMP-01-0124FEDER-027462), the strategic funding of UID/BIO/04469/2013 unit, COMPETE 2020 (POCI-01-0145-FEDER-006684), BioTecNorte operation(NORTE-01-0145-FEDER-000004) and the project MultiBiorefinery (POCI-01-0145-FEDER-016403) funded by European Regional Development Fund under the scope of Norte2020 - Programa Operacional Regional do Norte.info:eu-repo/semantics/publishedVersio

    The southern photometric local universe survey (S-PLUS): Improved SEDs, morphologies, and redshifts with 12 optical filters

    Get PDF
    The Southern Photometric Local Universe Survey (S-PLUS) is imaging ~9300 deg2 of the celestial sphere in 12 optical bands using a dedicated 0.8mrobotic telescope, the T80-South, at the Cerro Tololo Inter-american Observatory, Chile. The telescope is equipped with a 9.2k × 9.2k e2v detector with 10 μm pixels, resulting in a field of view of 2 deg2 with a plate scale of 0.55 arcsec pixel-1. The survey consists of four main subfields, which include two non-contiguous fields at high Galactic latitudes (|b| > 30° , 8000 deg2) and two areas of the Galactic Disc and Bulge (for an additional 1300 deg2). S-PLUS uses the Javalambre 12-band magnitude system, which includes the 5 ugriz broad-band filters and 7 narrow-band filters centred on prominent stellar spectral features: the Balmer jump/[OII], Ca H + K, Hd, G band, Mg b triplet, Hα, and the Ca triplet. S-PLUS delivers accurate photometric redshifts (δz/(1 + z) = 0.02 or better) for galaxies with r < 19.7 AB mag and z < 0.4, thus producing a 3D map of the local Universe over a volume of more than 1 (Gpc/h)3. The final S-PLUS catalogue will also enable the study of star formation and stellar populations in and around the Milky Way and nearby galaxies, as well as searches for quasars, variable sources, and low-metallicity stars. In this paper we introduce the main characteristics of the survey, illustrated with science verification data highlighting the unique capabilities of S-PLUS. We also present the first public data release of ~336 deg2 of the Stripe 82 area, in 12 bands, to a limiting magnitude of r = 21, available at datalab.noao.edu/splus.Fil: De Oliveira, C. Mendes. Universidade do Sao Paulo. Instituto de Astronomia, Geofísica e Ciências Atmosféricas; BrasilFil: Ribeiro, T.. Universidade Federal de Sergipe; Brasil. National Optical Astronomy Observatory; Estados UnidosFil: Schoenell, W.. Universidade Federal do Rio Grande do Sul; BrasilFil: Kanaan, A.. Universidade Federal de Santa Catarina; BrasilFil: Overzier, R.A.. Universidade do Sao Paulo. Instituto de Astronomia, Geofísica e Ciências Atmosféricas; Brasil. Ministério da Ciência, Tecnologia, Inovação e Comunicações. Observatório Nacional; BrasilFil: Molino, A.. Universidade do Sao Paulo. Instituto de Astronomia, Geofísica e Ciências Atmosféricas; BrasilFil: Sampedro, L.. Universidade do Sao Paulo. Instituto de Astronomia, Geofísica e Ciências Atmosféricas; BrasilFil: Coelho, P.. Universidade do Sao Paulo. Instituto de Astronomia, Geofísica e Ciências Atmosféricas; BrasilFil: Barbosa, C.E.. Universidade do Sao Paulo. Instituto de Astronomia, Geofísica e Ciências Atmosféricas; BrasilFil: Cortesi, A.. Universidade do Sao Paulo. Instituto de Astronomia, Geofísica e Ciências Atmosféricas; BrasilFil: Costa Duarte, M.V.. Universidade do Sao Paulo. Instituto de Astronomia, Geofísica e Ciências Atmosféricas; BrasilFil: Herpich, F.R.. Universidade do Sao Paulo. Instituto de Astronomia, Geofísica e Ciências Atmosféricas; Brasil. Universidade Federal de Santa Catarina; BrasilFil: Hernandez Jimenez, J.A.. Universidade do Sao Paulo. Instituto de Astronomia, Geofísica e Ciências Atmosféricas; BrasilFil: Placco, V.M.. University of Notre Dame; Estados Unidos. JINA Center for the Evolution of the Elements ; Estados UnidosFil: Xavier, H.S.. Universidade do Sao Paulo. Instituto de Astronomia, Geofísica e Ciências Atmosféricas; BrasilFil: Abramo, L.R.. Universidade do Sao Paulo. Instituto de Astronomia, Geofísica e Ciências Atmosféricas; BrasilFil: Saito, R.K.. Universidade Federal de Santa Catarina; BrasilFil: Chies Santos, A.L.. Universidade Federal do Rio Grande do Sul; BrasilFil: Ederoclite, A.. Universidade do Sao Paulo. Instituto de Astronomia, Geofísica e Ciências Atmosféricas; Brasil. Centro de Estudios de Física del Cosmo de Aragon; EspañaFil: De Oliveira, R. Lopes. Universidade Federal de Sergipe; Brasil. Ministério da Ciência, Tecnologia, Inovação e Comunicações. Observatório Nacional; Brasil. University of Maryland; Estados UnidosFil: Goncalves, D.R.. Universidade Federal do Rio de Janeiro; BrasilFil: Akras, S.. Ministério da Ciência, Tecnologia, Inovação e Comunicações. Observatório Nacional; Brasil. Universidade Federal do Rio de Janeiro; BrasilFil: Almeida, L.A.. Universidade do Sao Paulo. Instituto de Astronomia, Geofísica e Ciências Atmosféricas; Brasil. Universidade Federal do Rio Grande do Norte; BrasilFil: Almeida Fernandes, F.. Universidade do Sao Paulo. Instituto de Astronomia, Geofísica e Ciências Atmosféricas; Brasil. Universidade Federal do Rio de Janeiro; BrasilFil: Beers, T.C.. University of Notre Dame; Estados Unidos. JINA Center for the Evolution of the Elements ; Estados UnidosFil: Bonatto, C.. Universidade Federal do Rio Grande do Sul; BrasilFil: Bonoli, S.. Centro de Estudios de Física del Cosmo de Aragon; EspañaFil: Cypriano, E.S.. Universidade do Sao Paulo. Instituto de Astronomia, Geofísica e Ciências Atmosféricas; BrasilFil: Vinicius Lima, E.. Universidade do Sao Paulo. Instituto de Astronomia, Geofísica e Ciências Atmosféricas; BrasilFil: Smith Castelli, Analia Viviana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; Argentin
    corecore