154 research outputs found

    A multi-functional simulation platform for on-demand ride service operations

    Full text link
    On-demand ride services or ride-sourcing services have been experiencing fast development in the past decade. Various mathematical models and optimization algorithms have been developed to help ride-sourcing platforms design operational strategies with higher efficiency. However, due to cost and reliability issues (implementing an immature algorithm for real operations may result in system turbulence), it is commonly infeasible to validate these models and train/test these optimization algorithms within real-world ride sourcing platforms. Acting as a useful test bed, a simulation platform for ride-sourcing systems will be very important to conduct algorithm training/testing or model validation through trails and errors. While previous studies have established a variety of simulators for their own tasks, it lacks a fair and public platform for comparing the models or algorithms proposed by different researchers. In addition, the existing simulators still face many challenges, ranging from their closeness to real environments of ride-sourcing systems, to the completeness of different tasks they can implement. To address the challenges, we propose a novel multi-functional and open-sourced simulation platform for ride-sourcing systems, which can simulate the behaviors and movements of various agents on a real transportation network. It provides a few accessible portals for users to train and test various optimization algorithms, especially reinforcement learning algorithms, for a variety of tasks, including on-demand matching, idle vehicle repositioning, and dynamic pricing. In addition, it can be used to test how well the theoretical models approximate the simulated outcomes. Evaluated on real-world data based experiments, the simulator is demonstrated to be an efficient and effective test bed for various tasks related to on-demand ride service operations

    Cognition Impairment Prior to Errors of Working Memory Based on Event-Related Potential

    Get PDF
    Cognitive impairment contributes to errors in different tasks. Poor attention and poor cognitive control are the two neural mechanisms for performance errors. A few studies have been conducted on the error mechanism of working memory. It is unclear whether the changes in memory updating, attention, and cognitive control can cause errors and, if so, whether they can be probed at the same time in one single task. Therefore, this study analyzed event-related potentials in a two-back working memory task. A total of 40 male participants finished the task. The differences between the error and the correct trials in amplitudes and latencies of N1, P2, N2, and P3 were analyzed. The P2 and P3 amplitudes decreased significantly in the error trials, while the N2 amplitude increased. The results showed that impaired attention, poor memory updating, and impaired cognitive control were consistently associated with the error in working memory. Furthermore, the results suggested that monitoring the neurophysiological characteristics associated with attention and cognitive control was important for studying the error mechanism and error prediction. The results also suggested that the P3 and N2 amplitudes could be used as indexes for error foreshadowing

    Robust Biomass-Derived Carbon Frameworks as High-Performance Anodes in Potassium-Ion Batteries

    Get PDF
    Potassium-ion batteries (PIBs) have become one of the promising candidates for electrochemical energy storage that can provide low-cost and high-performance advantages. The poor cyclability and rate capability of PIBs are due to the intensive structural change of electrode materials during battery operation. Carbon-based materials as anodes have been successfully commercialized in lithium- and sodium-ion batteries but is still struggling in potassium-ion battery field. This work conducts structural engineering strategy to induce anionic defects within the carbon structures to boost the kinetics of PIBs anodes. The carbon framework provides a strong and stable structure to accommodate the volume variation of materials during cycling, and the further phosphorus doping modification is shown to enhance the rate capability. This is found due to the change of the pore size distribution, electronic structures, and hence charge storage mechanism. The optimized electrode in this work shows a high capacity of 175 mAh g^{-1} at a current density of 0.2 A g^{-1} and the enhancement of rate performance as the PIB anode (60% capacity retention with the current density increase of 50 times). This work, therefore provides a rational design for guiding future research on carbon-based anodes for PIBs

    Development of 146nm Vacuum UV Light Source

    Get PDF
    AbstractThe principle of dielectric-barrier discharge (DBD) producing 146nm vacuum ultraviolet (VUV) light is introduced in this article. MgF2 and Kr are used as the output window and the discharge gas, respectively, in the VUV light source. Fairly wide, narrow-bandwidth UV light could be generated with peak wavelength of 146nm and a full width at half maxima of 12nm. In addition, the impact of air pressure, voltage amplitude and frequency to the light source is also analyzed

    Onset of nonlinear electroosmotic flow under AC electric field

    Full text link
    Nonlinearity of electroosmotic flows (EOFs) is ubiquitous and plays a crucial role in the mass and energy transfer in ion transport, specimen mixing, electrochemistry reaction, and electric energy storage and utilizing. When and how the transition from a linear regime to a nonlinear one is essential for understanding, prohibiting or utilizing nonlinear EOF. However, suffers the lacking of reliable experimental instruments with high spatial and temporal resolutions, the investigation of the onset of nonlinear EOF still stays in theory. Herein, we experimentally studied the velocity fluctuations of EOFs driven by AC electric field via ultra-sensitive fluorescent blinking tricks. The linear and nonlinear AC EOFs are successfully identified from both the time trace and energy spectra of velocity fluctuations. The critical electric field (EA,CE_{A,C}) separating the two statuses is determined and is discovered by defining a generalized scaling law with respect to the convection velocity (UU) and AC frequency (fff_f) as EA,CE_{A,C}~ff0.480.027U{f_f}^{0.48-0.027U}. The universal control parameters are determined with surprising accuracy for governing the status of AC EOFs. We hope the current investigation could be essential in the development of both theory and applications of nonlinear EOF

    EUS assisted transmural cholecystogastrostomy fistula creation as a bridge for endoscopic internal gallbladder therapy using a novel fully covered metal stent

    Get PDF
    BACKGROUND: Laparoscopic cholecystectomy (LC) has become the “gold standard” for treating symptomatic gallstones. Innovative methods, such as a scarless therapeutic procedure through a natural orifice are being introduced, and include transgastric or transcolonic endoscopic cholecystectomy. However, before clinical implementation, instruments still need modification, and a more convenient treatment is still needed. The aim of this study was to evaluate the feasibility of endoscopic internal gallbladder therapy such as cholecystolithotomy in an animal survival model. METHODS: Four pigs underwent endoscopic-ultrasound (EUS)-guided cholecystogastrostomy and the placement of a novel covered mental stent. Four weeks later the stents were removed and an endoscope was advanced into the gallbladder via the fistula, and cholecystolithotomy was performed. Two weeks later the pigs were sacrificed, and the healing of the fistulas was assessed. RESULTS: EUS-guided cholecystogastrostomy with mental stent deployment was successfully performed in all the animals. Four weeks after the procedure, the fistulas had formed and all the stents were removed. Endoscopic cholecystolithotomy was performed through each fistula. All the animals survived until they were sacrificed 2 weeks later. The fistulas were found to be completely healed. CONCLUSIONS: This study reports the first endoscopic transmural cholecystolithotomy after placement of a novel mental stent in an animal survival model

    High-temperature modification of steel slag using composite modifier containing silicon calcium slag, fly ash, and reservoir sediment

    Get PDF
    Steel slag (SS) is a kind of industrial solid waste, and its accumulation brings certain harm to the ecological environment. In order to promote the building material utilization of SS, high-temperature modification (HTM) of SS is performed using a composite modifier (CMSFR) containing silicon calcium slag (SCS), fly ash (FA), and reservoir sediment (RS). Then, the authors investigated the effect of CMSFR on the cementitious properties and volume soundness of SS mixture after HTM (SMHTM). After that, the mineral composition and microstructure of SMHTM were investigated through X-ray fluorescence analysis (XRF), X-ray diffraction (XRD), scanning electronic microscopy (SEM), energy dispersive spectrometry (EDS), and particle size analysis. It was found that the free CaO (f-CaO) content obviously decreased, and the cementitious properties improved in SMHTM. When the CMSFR content was 20% (SCS: FA: RS = 9:7:4), and the modification temperature (MT) was 1,250°C, the mass fraction of f-CaO in SMHTM dropped from 4.81% to 1.90%, down by 60.5%; the 28-day activity index of SMHTM increased to 85.4%, 14.3% higher than that of raw SS, which meets the technical requirement of Steel slag powder used for cement and concrete (GB/T 20491-2017): the activity index of grade I SS powder must be greater than or equal to 80%. As the mass fraction of CMSFR grew from 10% to 30%, new mineral phases formed in SMHTM, including diopside (CMS2), ceylonite (MgFe2O4), gehlenite (C2AS), tricalcium aluminate (C3A), and magnetite (Fe3O4). The HTM with CMSFR promotes the decomposition of RO phase (a continuous solid solution composed of divalent metal oxides like FeO, MgO, MnO, and CaO) in raw SS, turning the FeO in that phase into Fe3O4. The above results indicate that the SMHTM mixed with CMSFR can be applied harmless in cement and concrete, making low-energy fine grinding of SS a possibility

    High-throughput screening of nitrogen-coordinated bimetal catalysts for multielectron reduction of CO2 to CH4 with high selectivity and low limiting potential

    Get PDF
    Significant challenges remain for developing efficient catalysts in an electrochemical multielectron CO2 reduction reaction (CO2RR), which usually suffers from poor activity and selectivity. Motivated by the recent experimental progress in fabricating dual-metal atom catalysts (DMACs) in N-doped graphene materials (graphene-N6V4; N: nitrogen and V: vacancy), we sampled eight types of homonuclear (N6V4-M2, M = Cr, Mn, Fe, Co, Ni, Cu, Pd, and Ag) catalysts and 28 types of heteronuclear (N6V4-M1M2) catalysts to study CO2RR activity via first-principles high-throughput screening. Using stability, activity, and selectivity as indicators along with the broken conventional scaling relationship, N6V4-AgCr was selected as a promising candidate for deep CO2 reduction to methane with a low overpotential of 0.55 V after two screening rounds. Further analysis showed that a frustrated Lewis pair, formed between metal and the para-N, owing to the difference in the electronic arrangement of the d orbitals of various transition metals, caused a difference in the spin polarization of the systems and affected the catalytic performance of each DMAC. Our work not only provides a solid strategy for screening potential catalysts but also demonstrates that their CO2 reduction activities originate from the various atomic and electronic structures of DMACs

    Pharmacokinetics, distribution, metabolism, and excretion of body-protective compound 157, a potential drug for treating various wounds, in rats and dogs

    Get PDF
    Body-protective compound (BPC) 157 demonstrates protective effects against damage to various organs and tissues. For future clinical applications, we had previously established a solid-phase synthesis process for BPC157, verified its biological activity in different wound models, and completed preclinical safety evaluations. This study aimed to investigate the pharmacokinetics, excretion, metabolism, and distribution profiles of BPC157. After a single intravenous (IV) administration, single intramuscular (IM) administrations at three doses in successive increments along with repeated IM administrations, the elimination half-life (t1/2) of prototype BPC157 was less than 30 min, and BPC157 showed linear pharmacokinetic characteristics in rats and beagle dogs at all doses. The mean absolute bioavailability of BPC157 following IM injection was approximately 14%–19% in rats and 45%–51% in beagle dogs. Using [3H]-labeled BPC157 and radioactivity examination, we proved that the main excretory pathways of BPC157 involved urine and bile. [3H]BPC157 was rapidly metabolized into a variety of small peptide fragments in vivo, thus forming single amino acids that entered normal amino acid metabolism and excretion pathways. In conclusion, this study provides the first analysis of the pharmacokinetics of BPC157, which will be helpful for its translation in the clinic
    corecore