On-demand ride services or ride-sourcing services have been experiencing fast
development in the past decade. Various mathematical models and optimization
algorithms have been developed to help ride-sourcing platforms design
operational strategies with higher efficiency. However, due to cost and
reliability issues (implementing an immature algorithm for real operations may
result in system turbulence), it is commonly infeasible to validate these
models and train/test these optimization algorithms within real-world ride
sourcing platforms. Acting as a useful test bed, a simulation platform for
ride-sourcing systems will be very important to conduct algorithm
training/testing or model validation through trails and errors. While previous
studies have established a variety of simulators for their own tasks, it lacks
a fair and public platform for comparing the models or algorithms proposed by
different researchers. In addition, the existing simulators still face many
challenges, ranging from their closeness to real environments of ride-sourcing
systems, to the completeness of different tasks they can implement. To address
the challenges, we propose a novel multi-functional and open-sourced simulation
platform for ride-sourcing systems, which can simulate the behaviors and
movements of various agents on a real transportation network. It provides a few
accessible portals for users to train and test various optimization algorithms,
especially reinforcement learning algorithms, for a variety of tasks, including
on-demand matching, idle vehicle repositioning, and dynamic pricing. In
addition, it can be used to test how well the theoretical models approximate
the simulated outcomes. Evaluated on real-world data based experiments, the
simulator is demonstrated to be an efficient and effective test bed for various
tasks related to on-demand ride service operations