6,251 research outputs found

    TOP-INDUCED ELECTROWEAK BREAKING IN THE MINIMAL SUPERSYMMETRIC STANDARD MODEL

    Get PDF
    Severe constraints on parameters of the minimal supersymmetric standard model follow from a dynamical electroweak symmetry breaking mechanism dominated by top and stop loops. In particular, the lightest Higgs boson mass is expected to be smaller than 100 GeV.Comment: 10 pages, Latex, 6 Postcript Figure

    Mass-radius relation for magnetized strange quark stars

    Get PDF
    We review the stability of magnetized strange quark matter (MSQM) within the phenomenological MIT bag model, taking into account the variation of the relevant input parameters, namely, the strange quark mass, baryon density, magnetic field and bag parameter. A comparison with magnetized asymmetric quark matter in β\beta-equilibrium as well as with strange quark matter (SQM) is presented. We obtain that the energy per baryon for MSQM decreases as the magnetic field increases, and its minimum value at vanishing pressure is lower than the value found for SQM, which implies that MSQM is more stable than non-magnetized SQM. The mass-radius relation for magnetized strange quark stars is also obtained in this framework.Comment: 7 pages, 6 figures. To be published in the Proceedings of 4th International Workshop on Relativistic Astrophysical and Astronomy IWARA0

    Probing the infrared quark mass from highly excited baryons

    Get PDF
    We argue that three-quark excited states naturally group into quartets, split into two parity doublets, and that the mass splittings between these parity partners decrease higher up in the baryon spectrum. This decreasing mass difference can be used to probe the running quark mass in the mid-infrared power-law regime. A measurement of masses of high-partial wave Delta* resonances should be sufficient to unambiguously establish the approximate degeneracy. We test this concept with the first computation of excited high-j baryon masses in a chirally invariant quark model.Comment: 4 pages, 4 figures. submitted to Phys Rev Letter

    Using highly excited baryons to catch the quark mass

    Get PDF
    Chiral symmetry in QCD can be simultaneously in Wigner and Goldstone modes, depending on the part of the spectrum examined. The transition regime between both, exploiting for example the onset of parity doubling in the high baryon spectrum, can be used to probe the running quark mass in the mid-IR power-law regime. In passing we also argue that three-quark states naturally group into same-flavor quartets, split into two parity doublets, all splittings decreasing high in the spectrum. We propose that a measurement of masses of high-partial wave Delta* resonances should be sufficient to unambiguously establish the approximate degeneracy and see the quark mass running. We test these concepts with the first computation of the spectrum of high-J excited baryons in a chiral-invariant quark model.Comment: 6 pages, 9 figures, To appear in the proceedings of the 19th International IUPAP Conference on Few-Body Problems in Physics; added acknowledgment, hyphenized author nam

    Signatures of the impact of flare ejected plasma on the photosphere of a sunspot light-bridge

    Full text link
    We investigate the properties of a sunspot light-bridge, focusing on the changes produced by the impact of a plasma blob ejected from a C-class flare. We observed a sunspot in active region NOAA 12544 using spectropolarimetric raster maps of the four Fe I lines around 15655 \AA\ with the GREGOR Infrared Spectrograph (GRIS), narrow-band intensity images sampling the Fe I 6173 \AA\ line with the GREGOR Fabry-P\'erot Interferometer (GFPI), and intensity broad band images in G-band and Ca II H band with the High-resolution Fast Imager (HiFI). All these instruments are located at the GREGOR telescope at the Observatorio del Teide, Tenerife, Spain. The data cover the time before, during, and after the flare event. The analysis is complemented with Atmospheric Imaging Assembly (AIA) and Helioseismic and Magnetic Imager (HMI) data from the Solar Dynamics Observatory (SDO). The physical parameters of the atmosphere at differents heights were inferred using spectral-line inversion techniques. We identify photospheric and chromospheric brightenings, heating events, and changes in the Stokes profiles associated to the flare eruption and the subsequent arrival of the plasma blob to the light bridge, after traveling along an active region loop. The measurements suggest that these phenomena are the result of reconnection events driven by the interaction of the plasma blob with the magnetic field topology of the light bridge.Comment: Accepted for publication in A&

    Entangled spinning particles in charged and rotating black holes

    Full text link
    Spin precession for an EPR pair of spin-1/2 particles in equatorial orbits around a Kerr-Newman black hole is studied. Hovering observers are introduced to ensure fixed reference frames in order to perform the Wigner rotation. These observers also guarantee a reliable direction to compare spin states in rotating black holes. The velocity of the particle due frame-dragging is explicitly incorporated by addition of velocities with respect the hovering observers and the corresponding spin precession angle is computed. The spin-singlet state is observed to be mixed with the spin-triplet by dynamical and gravity effects, thus it is found that a perfect anti-correlation of entangled states for these observers is deteriorated. Finally, an analysis concerning the different limit cases of parameters of spin precession including the frame-dragging effects is carried out.Comment: 25+1 pages, 7 eps figures. Major changes were made through all the manuscript. Clarifications regarding modifications were introduced through the draft. Figures were changed and reduced in number. arXiv admin note: text overlap with arXiv:quant-ph/030711

    Local Two-Photon Couplings and the J=0 Fixed Pole in Real and Virtual Compton Scattering

    Get PDF
    The local coupling of two photons to the fundamental quark currents of a hadron gives an energy-independent contribution to the Compton amplitude proportional to the charge squared of the struck quark, a contribution which has no analog in hadron scattering reactions. We show that this local contribution has a real phase and is universal, giving the same contribution for real or virtual Compton scattering for any photon virtuality and skewness at fixed momentum transfer squared t. The t-dependence of this J=0 fixed Regge pole is parameterized by a yet unmeasured even charge-conjugation form factor of the target nucleon. The t=0 limit gives an important constraint on the dependence of the nucleon mass on the quark mass through the Weisberger relation. We discuss how this 1/x form factor can be extracted from high energy deeply virtual Compton scattering and examine predictions given by models of the H generalized parton distribution.Comment: 20 pages, 15 figure

    Drift of particles in self-similar systems and its Liouvillian interpretation

    Full text link
    We study the dynamics of classical particles in different classes of spatially extended self-similar systems, consisting of (i) a self-similar Lorentz billiard channel, (ii) a self-similar graph, and (iii) a master equation. In all three systems the particles typically drift at constant velocity and spread ballistically. These transport properties are analyzed in terms of the spectral properties of the operator evolving the probability densities. For systems (i) and (ii), we explain the drift from the properties of the Pollicott-Ruelle resonance spectrum and corresponding eigenvectorsComment: To appear in Phys. Rev.
    • …
    corecore