59 research outputs found

    Icebergs in the North Atlantic: Modelling circulation changes and glacio-marine deposition

    Get PDF
    In order to investigate meltwater events in the North Atlantic, a simple iceberg generation, drift, and melting routine was implemented in a high-resolution OGCM. Starting from the modelled last glacial state, every 25th day cylindrical model icebergs 300 meters high were released at 32 specific points along the coasts. Icebergs launched at the Barents Shelf margin spread a light meltwater lid over the Norwegian and Greenland Seas, shutting down the deep convection and the anti-clockwise circulation in this area. Due to the constraining ocean circulation, the icebergs produce a tongue of relatively cold and fresh water extending eastward from Hudson Strait that must develop at this location, regardless of iceberg origin. From the total amount of freshwater inferred by the icebergs, the thickness of the deposited IRD could be calculated in dependance of iceberg sediment concentration. In this way, typical extent and thickness of Heinrich layers could be reproduced, running the model for 250 years of steady state with constant iceberg meltwater inflow

    Mechanical effects of left ventricular midwall fibrosis in non-ischemic cardiomyopathy

    Get PDF
    Background: Left ventricular (LV) mid-wall fibrosis (MWF), which occurs in about a quarter of patients with non-ischemic cardiomyopathy (NICM), is associated with high risk of pump failure. The mid LV wall is the site of circumferential myocardial fibers. We sought to determine the effect of MWF on LV myocardial mechanics. Methods: Patients with NICM (n = 116; age: 62.8 ± 13.2 years; 67 % male) underwent late gadolinium enhancement cardiovascular magnetic resonance (CMR) and were categorized according to the presence (+) or absence (-) of MWF. Feature tracking (FT) CMR was used to assess myocardial deformation. Results: Despite a similar LVEF (24.3 vs 27.5 %, p = 0.20), patients with MWF (32 [24 %]) had lower global circumferential strain (εcc: -6.6 % vs -9.4 %, P = 0.004), but similar longitudinal (εll: -7.6 % vs. -9.4 %, p = 0.053) and radial (εrr: 14.6 % vs. 17.8 % p = 0.18) strain. Compared with - MWF, + MWF was associated with reduced LV systolic, circumferential strain rate (-0.38 ± 0.1 vs -0.56 ± 0.3 s-1, p = 0.005) and peak LV twist (4.65 vs. 6.31°, p = 0.004), as well as rigid LV body rotation (64 % vs 28 %, P cc: 0.34 vs. 0.46 s-1; DSRll: 0.38 vs. 0.50s-1; DSRrr: -0.55 vs. -0.75 s-1; all

    Myocardial tagging by Cardiovascular Magnetic Resonance: evolution of techniques--pulse sequences, analysis algorithms, and applications

    Get PDF
    Cardiovascular magnetic resonance (CMR) tagging has been established as an essential technique for measuring regional myocardial function. It allows quantification of local intramyocardial motion measures, e.g. strain and strain rate. The invention of CMR tagging came in the late eighties, where the technique allowed for the first time for visualizing transmural myocardial movement without having to implant physical markers. This new idea opened the door for a series of developments and improvements that continue up to the present time. Different tagging techniques are currently available that are more extensive, improved, and sophisticated than they were twenty years ago. Each of these techniques has different versions for improved resolution, signal-to-noise ratio (SNR), scan time, anatomical coverage, three-dimensional capability, and image quality. The tagging techniques covered in this article can be broadly divided into two main categories: 1) Basic techniques, which include magnetization saturation, spatial modulation of magnetization (SPAMM), delay alternating with nutations for tailored excitation (DANTE), and complementary SPAMM (CSPAMM); and 2) Advanced techniques, which include harmonic phase (HARP), displacement encoding with stimulated echoes (DENSE), and strain encoding (SENC). Although most of these techniques were developed by separate groups and evolved from different backgrounds, they are in fact closely related to each other, and they can be interpreted from more than one perspective. Some of these techniques even followed parallel paths of developments, as illustrated in the article. As each technique has its own advantages, some efforts have been made to combine different techniques together for improved image quality or composite information acquisition. In this review, different developments in pulse sequences and related image processing techniques are described along with the necessities that led to their invention, which makes this article easy to read and the covered techniques easy to follow. Major studies that applied CMR tagging for studying myocardial mechanics are also summarized. Finally, the current article includes a plethora of ideas and techniques with over 300 references that motivate the reader to think about the future of CMR tagging

    The Influence of Law and Economics Scholarship on Contract Law: Impressions Twenty-Five Years Later

    Full text link

    Coral Ulcer as a Vasculitis

    No full text
    • …
    corecore