12 research outputs found
Nucleolin Inhibits G4 Oligonucleotide Unwinding by Werner Helicase
The Werner protein (WRNp), a member of the RecQ helicase family, is strongly associated with the nucleolus, as is nucleolin (NCL), an important nucleolar constituent protein. Both WRNp and NCL respond to the effects of DNA damaging agents. Therefore, we have investigated if these nuclear proteins interact and if this interaction has a possible functional significance in DNA damage repair.Here we report that WRNp interacts with the RNA-binding protein, NCL, based on immunoprecipitation, immunofluorescent co-localization in live and fixed cells, and direct binding of purified WRNp to nucleolin. We also map the binding region to the C-terminal domains of both proteins. Furthermore, treatment of U2OS cells with 15 µM of the Topoisomerase I inhibitor, camptothecin, causes the dissociation of the nucleolin-Werner complex in the nucleolus, followed by partial re-association in the nucleoplasm. Other DNA damaging agents, such as hydroxyurea, Mitomycin C, and aphidicolin do not have these effects. Nucleolin or its C-terminal fragment affected the helicase, but not the exonuclease activity of WRNp, by inhibiting WRN unwinding of G4 tetraplex DNA structures, as seen in activity assays and electrophoretic mobility shift assays (EMSA).These data suggest that nucleolin may regulate G4 DNA unwinding by WRNp, possibly in response to certain DNA damaging agents. We postulate that the NCL-WRNp complex may contain an inactive form of WRNp, which is released from the nucleolus upon DNA damage. Then, when required, WRNp is released from inhibition and can participate in the DNA repair processes
Multiple involvement of oxidative stress in Werner syndrome phenotype
Werner syndrome is a genetic disease characterized by early ageing, excess cancer risk, high incidence of type II diabetes mellitus, early atherosclerosis, ocular cataracts, and osteoporosis. The protein encoded by the defective gene, WRN (WRNp) associates with three activities, that is, a RecQ DNA helicase, 3'-5'-exonuclease and ATPase activities. By highlighting the DNA helicase activity, a widespread consensus in WS-associated defect(s) has been established, pointing toward a deficiency in maintaining DNA integrity. However, a possible involvement of redox pathways in WS may be suggested by several lines of evidence that include: (i) the multiple functions and interactions of WRNp with oxidative stress-related activities and factors; (ii) the pleiotropic WS clinical phenotype encompassing a number of oxidative stress-related pathologies; (iii) redox-related toxicity mechanisms of several xenobiotics exerting excess toxicity in WS cells; (iv) recent in vivo and in vitro findings of redox abnormalities in WS patients and in WS cells. The working hypothesis is raised that a deficiency in WRNp, and the pleiotropic clinical phenotype in WS patients may provide the basis to envision an underlying in vivo prooxidant state, which causes oxidative damage to biomolecules, with multiple oxidative stress-related alterations, resulting in multi-faceted clinical consequence
DNA damage emergency: cellular garbage disposal to the rescue?
The proteasome is a cellular machine found in the cytosol, nucleus and on chromatin that performs much of the proteolysis in eukaryotic cells. Recent reports show it is enriched at sites of double-stranded DNA breaks (DSBs) in mammalian cells. What is it doing there? This review will address three possibilities suggested by recent reports: in degrading proteins after their ubiquitination at and eviction from chromatin; as a deubiquitinase, specific to the antagonism of ubiquitin conjugates generated as part of the signalling of a DSB; and as a functional component of DNA repair mechanism itself. These findings add complexity to the proteasome as a potential therapeutic target in cancer treatment