55 research outputs found

    The dipeptide Phe-Phe amide attenuates signs of hyperalgesia, allodynia and nociception in diabetic mice using a mechanism involving the sigma receptor system

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Previous studies have demonstrated that intrathecal administration of the substance P amino-terminal metabolite substance P<sub>1-7 </sub>(SP<sub>1-7</sub>) and its C-terminal amidated congener induced antihyperalgesic effects in diabetic mice. In this study, we studied a small synthetic dipeptide related to SP<sub>1-7 </sub>and endomorphin-2, i.e. Phe-Phe amide, using the tail-flick test and von Frey filament test in diabetic and non-diabetic mice.</p> <p>Results</p> <p>Intrathecal treatment with the dipeptide increased the tail-flick latency in both diabetic and non-diabetic mice. This effect of Phe-Phe amide was significantly greater in diabetic mice than non-diabetic mice. The Phe-Phe amide-induced antinociceptive effect in both diabetic and non-diabetic mice was reversed by the σ<sub>1 </sub>receptor agonist (+)-pentazocine. Moreover, Phe-Phe amide attenuated mechanical allodynia in diabetic mice, which was reversible by (+)-pentazocine. The expression of spinal σ1 receptor mRNA and protein did not differ between diabetic mice and non-diabetic mice. On the other hand, the expression of phosphorylated extracellular signal-regulated protein kinase 1 (ERK1) and ERK2 proteins was enhanced in diabetic mice. (+)-Pentazocine caused phosphorylation of ERK1 and ERK2 proteins in non-diabetic mice, but not in diabetic mice.</p> <p>Conclusions</p> <p>These results suggest that the spinal σ<sub>1 </sub>receptor system might contribute to diabetic mechanical allodynia and thermal hyperalgesia, which could be potently attenuated by Phe-Phe amide.</p

    Opioid but not nonopioid stress-induced analgesia is enhanced following prenatal exposure to ethanol

    Full text link
    Two neurochemically distinct forms of stress-induced analgesia were examined in adult rats following prenatal ethanol exposure. Rats were exposed to ethanol during the last 2 weeks of gestation through a liquid diet presented to the dams. Analgesia testing was conducted when the offspring were 150–210 days of age. Two forms of footshock stress were administered; one that resulted in a naloxone-sensitive (opioid-mediated) analgesia and one that resulted in a naloxone-insensitive (nonopioid) form of analgesia. Rats prenatally exposed to ethanol demonstrated significantly enhanced opioid-mediated analgesia, but unaltered nonpoioid analgesia compared to controls. These results confirm previous findings that prenatal exposure to ethanol leads to long-term alterations in responding to some, but not all forms of stress. The possibility that prenatal exposure to ethanol leads to perturbations in the endogenous opioid systems is discussed.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/46435/1/213_2004_Article_BF00427329.pd

    Ginger ( Zingiber officinale

    No full text

    Matricaria urea extract exhibits antinociceptive activity in male rat

    No full text
    corecore