8 research outputs found

    Riemannian Geometry Applied to Detection of Respiratory States from EEG Signals: The Basis for a Brain-Ventilator Interface

    No full text
    Goal: During mechanical ventilation, patient-ventilator disharmony is frequently observed and may result in increased breathing effort, compromising the patient's comfort and recovery. This circumstance requires clinical intervention and becomes challenging when verbal communication is difficult. In this study, we propose a brain-computer interface (BCI) to automatically and noninvasively detect patient-ventilator disharmony from electroencephalographic (EEG) signals: a brain-ventilator interface (BVI). Methods: Our framework exploits the cortical activation provoked by the inspiratory compensation when the subject and the ventilator are desynchronized. Use of a one-class approach and Riemannian geometry of EEG covariance matrices allows effective classification of respiratory states. The BVI is validated on nine healthy subjects that performed different respiratory tasks that mimic a patient-ventilator disharmony. Results: Classification performances, in terms of areas under receiver operating characteristic curves, are significantly improved using EEG signals compared to detection based on air flow. Reduction in the number of electrodes that can achieve discrimination can be often desirable (e.g., for portable BCI systems). By using an iterative channel selection technique, the common highest order ranking, we find that a reduced set of electrodes (=6) can slightly improve for an intrasubject configuration, and it still provides fairly good performances for a general intersubject setting. Conclusion: Results support the discriminant capacity of our approach to identify anomalous respiratory states, by learning from a training set containing only normal respiratory epochs. Significance: The proposed framework opens the door to BVIs for monitoring patient's breathing comfort and adapting ventilator parameters to patient respiratory needs

    High-resolution EEG techniques for brain-computer interface applications

    No full text
    High-resolution electroencephalographic (HREEG) techniques allow estimation of cortical activity based on non-invasive scalp potential measurements, using appropriate models of volume conduction and of neuroelectrical sources. In this study we propose an application of this body of technologies, originally developed to obtain functional images of the brain's electrical activity, in the context of brain-computer interfaces (BCI). Our working hypothesis predicted that, since HREEG pre-processing removes spatial correlation introduced by current conduction in the head structures, by providing the BCI with waveforms that are mostly due to the unmixed activity of a small cortical region, a more reliable classification would be obtained, at least when the activity to detect has a limited generator, which is the case in motor related tasks. HREEG techniques employed in this study rely on (i) individual head models derived from anatomical magnetic resonance images, (ii) distributed source model, composed of a layer of current dipoles, geometrically constrained to the cortical mantle, (iii) depth-weighted minimum L(2)-norm constraint and Tikhonov regularization for linear inverse problem solution and (iv) estimation of electrical activity in cortical regions of interest corresponding to relevant Brodmann areas. Six subjects were trained to learn self modulation of sensorimotor EEG rhythms, related to the imagination of limb movements. Off-line EEG data was used to estimate waveforms of cortical activity (cortical current density, CCD) on selected regions of interest. CCD waveforms were fed into the BCI computational pipeline as an alternative to raw EEG signals; spectral features are evaluated through statistical tests (r(2) analysis), to quantify their reliability for BCI control. These results are compared, within subjects, to analogous results obtained without HREEG techniques. The processing procedure was designed in such a way that computations could be split into a setup phase (which includes most of the computational burden) and the actual EEG processing phase, which was limited to a single matrix multiplication. This separation allowed to make the procedure suitable for on-line utilization, and a pilot experiment was performed. Results show that lateralization of electrical activity, which is expected to be contralateral to the imagined movement, is more evident on the estimated CCDs than in the scalp potentials. CCDs produce a pattern of relevant spectral features that is more spatially focused, and has a higher statistical significance (EEG: 0.20+/-0.114 S.D.; CCD: 0.55+/-0.16 S.D.; p=10(-5)). A pilot experiment showed that a trained subject could utilize voluntary modulation of estimated CCDs for accurate (eight targets) on-line control of a cursor. This study showed that it is practically feasible to utilize HREEG techniques for on-line operation of a BCI system; off-line analysis suggests that accuracy of BCI control is enhanced by the proposed metho

    Bootstrapping on Undirected Binary Networks Via Statistical Mechanics

    No full text
    We propose a new method inspired from statistical mechanics for extracting geometric information from undirected binary networks and generating random networks that conform to this geometry. In this method an undirected binary network is perceived as a thermodynamic system with a collection of permuted adjacency matrices as its states. The task of extracting information from the network is then reformulated as a discrete combinatorial optimization problem of searching for its ground state. To solve this problem, we apply multiple ensembles of temperature regulated Markov chains to establish an ultrametric geometry on the network. This geometry is equipped with a tree hierarchy that captures the multiscale community structure of the network. We translate this geometry into a Parisi adjacency matrix, which has a relative low energy level and is in the vicinity of the ground state. The Parisi adjacency matrix is then further optimized by making block permutations subject to the ultrametric geometry. The optimal matrix corresponds to the macrostate of the original network. An ensemble of random networks is then generated such that each of these networks conforms to this macrostate; the corresponding algorithm also provides an estimate of the size of this ensemble. By repeating this procedure at different scales of the ultrametric geometry of the network, it is possible to compute its evolution entropy, i.e. to estimate the evolution of its complexity as we move from a coarse to a ne description of its geometric structure. We demonstrate the performance of this method on simulated as well as real data networks

    Theta Burst Stimulation of the Precuneus Modulates Resting State Connectivity in the Left Temporal Pole

    No full text
    It has been shown that continuous theta burst stimulation (cTBS) over the precuneus acts on specific memory retrieval abilities. In order to study the neural mechanisms beyond these findings, we combined cTBS and resting-state functional magnetic resonance imaging. Our experimental protocol involved stimulation and sham conditions on a group of healthy subjects, and each condition included a baseline and two follow-up acquisitions (5 and 15 min after baseline) after cTBS. We analysed brain functional connectivity by means of graph theoretical measures, with a specific focus on the network modular structure. Our results showed that cTBS of the precuneus selectively affects the left temporal pole, decreasing its functional connectivity in the first follow-up. Moreover, we observed a significant increase in the size of the module of the precuneus in the second follow-up. Such effects were absent in the sham condition. We observed here a modulation of functional connectivity as a result of inhibitory stimulation over the precuneus. Such a modulation first acts indirectly on the temporal area and then extends the connectivity of the precuneus itself by a feed-back mechanism. Our current findings extend our previous behavioural observations and increase our understanding of the mechanisms underlying the stimulation of the precuneus
    corecore