7 research outputs found

    Glycosaminoglycan Binding Facilitates Entry of a Bacterial Pathogen into Central Nervous Systems

    Get PDF
    Certain microbes invade brain microvascular endothelial cells (BMECs) to breach the blood-brain barrier (BBB) and establish central nervous system (CNS) infection. Here we use the leading meningitis pathogen group B Streptococcus (GBS) together with insect and mammalian infection models to probe a potential role of glycosaminoglycan (GAG) interactions in the pathogenesis of CNS entry. Site-directed mutagenesis of a GAG-binding domain of the surface GBS alpha C protein impeded GBS penetration of the Drosophila BBB in vivo and diminished GBS adherence to and invasion of human BMECs in vitro. Conversely, genetic impairment of GAG expression in flies or mice reduced GBS dissemination into the brain. These complementary approaches identify a role for bacterial-GAG interactions in the pathogenesis of CNS infection. Our results also highlight how the simpler yet genetically conserved Drosophila GAG pathways can provide a model organism to screen candidate molecules that can interrupt pathogen-GAG interactions for future therapeutic applications

    Manipulating the Biosynthesis of Bioactive Compound Alkaloids for Next-Generation Metabolic Engineering in Opium Poppy Using CRISPR-Cas 9 Genome Editing Technology

    Get PDF
    Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated9 (Cas9) endonuclease system is a powerful RNA-guided genome editing tool. CRISPR/Cas9 has been well studied in model plant species for targeted genome editing. However, few studies have been reported on plant species without whole genome sequence information. Currently, no study has been performed to manipulate metabolic pathways using CRISPR/Cas9. In this study, the type II CRISPR/SpCas9 system was used to knock out, via nonhomologous end-joining genome repair, the 4′OMT2 in opium poppy (Papaver somniferum L.), a gene which regulates the biosythesis of benzylisoquinoline alkaloids (BIAs). For sgRNA transcription, viral-based TRV and synthetic binary plasmids were designed and delivered into plant cells with a Cas9 encoding-synthetic vector by Agrobacterium-mediated transformation. InDels formed by CRISPR/Cas9 were detected by sequence analysis. Our results showed that the biosynthesis of BIAs (e.g. morphine, thebaine) was significantly reduced in the transgenic plants suggesting that 4′OMT2 was efficiently knocked-out by our CRISPR-Cas9 genome editing approach. In addition, a novel uncharacterized alkaloid was observed only in CRISPR/Cas9 edited plants. Thus, the applicabilitiy of the CRISPR/Cas9 system was demonstrated for the first time for medicinal aromatic plants by sgRNAs transcribed from both synthetic and viral vectors to regulate BIA metabolism and biosynthesis

    Technology Assessment Working Group

    No full text

    Cognitive Training for Impaired Neural Systems in Neuropsychiatric Illness

    No full text
    corecore