12 research outputs found

    Reduced pro-inflammatory profile of γδT cells in pregnant patients with rheumatoid arthritis

    Get PDF
    BACKGROUND During pregnancy, many patients with rheumatoid arthritis (RA) experience disease improvement, whereas patients with ankylosing spondylitis often suffer from persistent active disease. Here we investigated whether pregnancy-related changes in disease activity were associated with changes in the proportion and function of γδT cells. METHODS The study population comprised 55 patients with RA, 31 patients with ankylosing spondylitis, and 35 healthy controls. Among these participants, 28 RA patients, 21 ankylosing spondylitis patients, and 23 healthy controls were investigated once before conception when possible, at each trimester of pregnancy, and at 8 weeks postpartum. Data were compared with age-matched non-pregnant patients to obtain disease-related background. In all subjects, peripheral Vδ1 and Vδ2 T cells were analyzed for cell frequencies, the activation marker CD69, the cytotoxicity markers NKG2D and NKG2A, and the intracellular cytokines tumor necrosis factor (TNF)α, interferon (IFN)γ, interleukin (IL)-17 and IL-10. RESULTS Pregnant patients showed a decreased Vδ2/Vδ1 ratio in the third trimester, which resulted from a slightly reduced proportion of Vδ2 cells. Changes in RA disease activity during pregnancy and postpartum were not associated with numerical proportions of γδT cells but with changes of the cell activation marker CD69 on Vδ1 and Vδ2 cells. Only RA patients showed reduced proportions of TNFα-positive Vδ1and Vδ2 cells and IFNγ-positive Vδ2 cells at the third trimester of pregnancy, a finding that was not apparent in the entire population of CD3 T cells. The proportions of IL-17-positive γδT cells and IL-10-positive γδT cells did not differ between pregnant and non-pregnant women of the different groups. CONCLUSIONS Changes of disease activity in pregnant RA patients were associated with functional changes in both γδT cell subsets. This reduced pro-inflammatory profile of γδT cells might contribute to the immunomodulation resulting in pregnancy-induced improvement of RA

    Polymorphisms at phase I-metabolizing enzyme and hormone receptor loci influence the response to anti-TNF therapy in rheumatoid arthritis patients

    No full text
    © Springer Nature Limited 2018The aim of this case-control study was to evaluate whether 47 single-nucleotide polymorphisms (SNPs) in steroid hormone-related genes are associated with the risk of RA and anti-TNF drug response. We conducted a case-control study in 3 European populations including 2936 RA patients and 2197 healthy controls. Of those, a total of 1985 RA patients were treated with anti-TNF blockers. The association of potentially interesting markers in the discovery population was validated through meta-analysis with data from DREAM and DANBIO registries. Although none of the selected variants had a relevant role in modulating RA risk, the meta-analysis of the linear regression data with those from the DREAM and DANBIO registries showed a significant correlation of the CYP3A4rs11773597 and CYP2C9rs1799853 variants with changes in DAS28 after the administration of anti-TNF drugs (P = 0.00074 and P = 0.006, respectively). An overall haplotype analysis also showed that the ESR2GGG haplotype significantly associated with a reduced chance of having poor response to anti-TNF drugs (P = 0.0009). Finally, a ROC curve analysis confirmed that a model built with eight steroid hormone-related variants significantly improved the ability to predict drug response compared with the reference model including demographic and clinical variables (AUC = 0.633 vs. AUC = 0.556; PLR_test = 1.52 × 10-6). These data together with those reporting that the CYP3A4 and ESR2 SNPs correlate with the expression of TRIM4 and ESR2 mRNAs in PBMCs (ranging from P = 1.98 × 10-6 to P = 2.0 × 10-35), and that the CYP2C9rs1799853 SNP modulates the efficiency of multiple drugs, suggest that steroid hormone-related genes may have a role in determining the response to anti-TNF drugs.KEY POINTS• Polymorphisms within the CYP3A4 and CYP2C9 loci correlate with changes in DAS28 after treatment with anti-TNF drugs.• A haplotype including eQTL SNPs within the ESR2 gene associates with better response to anti-TNF drugs.• A genetic model built with eight steroid hormone-related variants significantly improved the ability to predict drug response.This work was supported by grants from FIBAO foundation (Granada, Spain), Novo Nordisk Fonden (NNF15OC0016932), Knud og Edith Eriksens Mindefond and Gigtforeningen (A2037, A3570).info:eu-repo/semantics/publishedVersio
    corecore