10 research outputs found

    Superconformal Yang-Mills quantum mechanics and Calogero model with OSp(N|2,R) symmetry

    Full text link
    In spacetime dimension two, pure Yang-Mills possesses no physical degrees of freedom, and consequently it admits a supersymmetric extension to couple to an arbitrary number, N say, of Majorana-Weyl gauginos. This results in (N,0) super Yang-Mills. Further, its dimensional reduction to mechanics doubles the number of supersymmetries, from N to N+N, to include conformal supercharges, and leads to a superconformal Yang-Mills quantum mechanics with symmetry group OSp(N|2,R). We comment on its connection to AdS_2 \times S^{N-1} and reduction to a supersymmetric Calogero model.Comment: 1+28 pages, no figure; Refs added. To appear in JHE

    Uncoupling neuronal death and dysfunction in Drosophila models of neurodegenerative disease

    Get PDF
    Common neurodegenerative proteinopathies, such as Alzheimer’s disease (AD) and Parkinson’s disease (PD), are characterized by the misfolding and aggregation of toxic protein species, including the amyloid beta (Aß) peptide, microtubule-associated protein Tau (Tau), and alpha-synuclein (αSyn) protein. These factors also show toxicity in Drosophila; however, potential limitations of prior studies include poor discrimination between effects on the adult versus developing nervous system and neuronal versus glial cell types. In addition, variable expression paradigms and outcomes hinder systematic comparison of toxicity profiles. Using standardized conditions and medium-throughput assays, we express human Tau, Aß or αSyn selectively in neurons of the adult Drosophila retina and monitor age-dependent changes in both structure and function, based on tissue histology and recordings of the electroretinogram (ERG), respectively. We find that each protein causes a unique profile of neurodegenerative pathology, demonstrating distinct and separable impacts on neuronal death and dysfunction. Strikingly, expression of Tau leads to progressive loss of ERG responses whereas retinal architecture and neuronal numbers are largely preserved. By contrast, Aß induces modest, age-dependent neuronal loss without degrading the retinal ERG. αSyn expression, using a codon-optimized transgene, is characterized by marked retinal vacuolar change, progressive photoreceptor cell death, and delayed-onset but modest ERG changes. Lastly, to address potential mechanisms, we perform transmission electron microscopy (TEM) to reveal potential degenerative changes at the ultrastructural level. Surprisingly, Tau and αSyn each cause prominent but distinct synaptotoxic profiles, including disorganization or enlargement of photoreceptor terminals, respectively. Our findings highlight variable and dynamic properties of neurodegeneration triggered by these disease-relevant proteins in vivo, and suggest that Drosophila may be useful for revealing determinants of neuronal dysfunction that precede cell loss, including synaptic changes, in the adult nervous system

    Bridging high-throughput genetic and transcriptional data reveals cellular responses to alpha-synuclein toxicity

    No full text
    Cells respond to stimuli by changes in various processes, including signaling pathways and gene expression. Efforts to identify components of these responses increasingly depend on mRNA profiling and genetic library screens, yet the functional roles of the genes identified by these assays often remain enigmatic. By comparing the results of these two assays across various cellular responses, we found that they are consistently distinct. Moreover, genetic screens tend to identify response regulators, while mRNA profiling frequently detects metabolic responses. We developed an integrative approach that bridges the gap between these data using known molecular interactions, thus highlighting major response pathways. We harnessed this approach to reveal cellular pathways related to alpha-synuclein, a small lipid-binding protein implicated in several neurodegenerative disorders including Parkinson disease. For this we screened an established yeast model for alphasynuclein toxicity to identify genes that when overexpressed alter cellular survival. Application of our algorithm to these data and data from mRNA profiling provided functional explanations for many of these genes and revealed novel relations between alpha-synuclein toxicity and basic cellular pathways.MGH/MIT Morris Udall Center of Excellence in PD Researc

    The biochemistry of neuronal necrosis: rogue biology?

    No full text
    corecore