64 research outputs found

    Alzheimer’s disease cerebrospinal fluid biomarkers are not influenced by gravity drip or aspiration extraction methodology

    Get PDF
    Introduction: Cerebrospinal fluid (CSF) biomarkers, although of established utility in the diagnostic evaluation of Alzheimer's disease (AD), are known to be sensitive to variation based on pre-analytical sample processing. We assessed whether gravity droplet collection versus syringe aspiration was another factor influencing CSF biomarker analyte concentrations and reproducibility. Methods: Standardized lumbar puncture using small calibre atraumatic spinal needles and CSF collection using gravity fed collection followed by syringe aspirated extraction was performed in a sample of elderly individuals participating in a large long-term observational research trial. Analyte assay concentrations were compared. Results: For the 44 total paired samples of gravity collection and aspiration, reproducibility was high for biomarker CSF analyte assay concentrations (concordance correlation [95%CI]: beta-amyloid1-42 (Aβ42) 0.83 [0.71 - 0.90]), t-tau 0.99 [0.98 - 0.99], and phosphorylated tau (p-tau) 0.82 [95 % CI 0.71 - 0.89]) and Bonferroni corrected paired sample t-tests showed no significant differences (group means (SD): Aβ42 366.5 (86.8) vs 354.3 (82.6), p = 0.10; t-tau 83.9 (46.6) vs 84.7 (47.4) p = 0.49; p-tau 43.5 (22.8) vs 40.0 (17.7), p = 0.05). The mean duration of collection was 10.9 minutes for gravity collection and <1 minute for aspiration. Conclusions: Our results demonstrate that aspiration of CSF is comparable to gravity droplet collection for AD biomarker analyses but could considerably accelerate throughput and improve the procedural tolerability for assessment of CSF biomarkers

    The cytotoxicity and synergistic potential of aspirin and aspirin analogues towards oesophageal and colorectal cancer

    Get PDF
    Background: Oesophageal cancer (OC) is a deadly cancer because of its aggressive nature with survival rates that have barely improved in decades. Epidemiologic studies have shown that low-dose daily intake of aspirin can decrease the incidence of OC. Methods: The toxicity of aspirin and aspirin derivatives to OC and a colorectal cancer (CRC) cell line were investigated in the presence and absence of platins. Results: The data in this study show the effects of a number of aspirin analogues and aspirin on OC cell lines that originally presented as squamous cell carcinoma (SSC) and adenocarcinoma (ADC). The aspirin analogues fumaryldiaspirin (PN517) and the benzoylsalicylates (PN524, PN528 and PN529), were observed to be more toxic against the OC cell lines than aspirin. Both quantitative and qualitative apoptosis experiments reveal that these compounds largely induce apoptosis, although some necrosis was evident with PN528 and PN529. Failure to recover following the treatment with these analogues emphasized that these drugs are largely cytotoxic in nature. The OE21 (SSC) and OE33 (ADC) cell lines were more sensitive to the aspirin analogues compared to the Flo-1 cell line (ADC). A non-cancerous oesophageal primary cells NOK2101, was used to determine the specificity of the aspirin analogues and cytotoxicity assays revealed that analogues PN528 and PN529 were selectively toxic to cancer cell lines, whereas PN508, PN517 and PN524 also induced cell death in NOK2101. In combination index testing synergistic interactions of the most promising compounds, including aspirin, with cisplatin, oxaliplatin and carboplatin against the OE33 cell line and the SW480 CRC cell line were investigated. Compounds PN517 and PN524, and to a lesser extent PN528, synergised with cisplatin against OE33 cells. Cisplatin and oxaliplatin synergised with aspirin and PN517 when tested against the SW480 cell line. Conclusion: These findings indicate the potential and limitations of aspirin and aspirin analogues as chemotherapeutic agents against OC and CRC when combined with platins

    Search for Gravitational Waves Associated with Gamma-Ray Bursts Detected by Fermi and Swift during the LIGO-Virgo Run O3b

    Get PDF
    We search for gravitational-wave signals associated with gamma-ray bursts (GRBs) detected by the Fermi and Swift satellites during the second half of the third observing run of Advanced LIGO and Advanced Virgo (2019 November 1 15:00 UTC-2020 March 27 17:00 UTC). We conduct two independent searches: A generic gravitational-wave transients search to analyze 86 GRBs and an analysis to target binary mergers with at least one neutron star as short GRB progenitors for 17 events. We find no significant evidence for gravitational-wave signals associated with any of these GRBs. A weighted binomial test of the combined results finds no evidence for subthreshold gravitational-wave signals associated with this GRB ensemble either. We use several source types and signal morphologies during the searches, resulting in lower bounds on the estimated distance to each GRB. Finally, we constrain the population of low-luminosity short GRBs using results from the first to the third observing runs of Advanced LIGO and Advanced Virgo. The resulting population is in accordance with the local binary neutron star merger rate. © 2022. The Author(s). Published by the American Astronomical Society

    Narrowband Searches for Continuous and Long-duration Transient Gravitational Waves from Known Pulsars in the LIGO-Virgo Third Observing Run

    Get PDF
    Isolated neutron stars that are asymmetric with respect to their spin axis are possible sources of detectable continuous gravitational waves. This paper presents a fully coherent search for such signals from eighteen pulsars in data from LIGO and Virgo's third observing run (O3). For known pulsars, efficient and sensitive matched-filter searches can be carried out if one assumes the gravitational radiation is phase-locked to the electromagnetic emission. In the search presented here, we relax this assumption and allow both the frequency and the time derivative of the frequency of the gravitational waves to vary in a small range around those inferred from electromagnetic observations. We find no evidence for continuous gravitational waves, and set upper limits on the strain amplitude for each target. These limits are more constraining for seven of the targets than the spin-down limit defined by ascribing all rotational energy loss to gravitational radiation. In an additional search, we look in O3 data for long-duration (hours-months) transient gravitational waves in the aftermath of pulsar glitches for six targets with a total of nine glitches. We report two marginal outliers from this search, but find no clear evidence for such emission either. The resulting duration-dependent strain upper limits do not surpass indirect energy constraints for any of these targets. © 2022. The Author(s). Published by the American Astronomical Society
    corecore