927 research outputs found

    Force measurements with optical tweezers inside living cells

    Get PDF
    The force exerted by optical tweezers can be measured by tracking the momentum changes of the trapping beam, a method which is more general and powerful than traditional calibration techniques as it is based on first principles, but which has not been brought to its full potential yet, probably due to practical difficulties when combined with high-NA optical traps, such as the necessity to capture a large fraction of the scattered light. We show that it is possible to measure forces on arbitrary biological objects inside cells without an in situ calibration, using this approach. The instrument can be calibrated by measuring three scaling parameters that are exclusively determined by the design of the system, thus obtaining a conversion factor from volts to piconewtons that is theoretically independent of the physical properties of the sample and its environment. We prove that this factor keeps valid inside cells as it shows good agreement with other calibration methods developed in recent years for viscoelastic media. Finally, we apply the method to measuring the stall forces of kinesin and dynein in living A549 cells.Publisher PD

    Are we there yet?:An update on transitional care in rheumatology

    Get PDF
    Abstract Significant progress has been made in the understanding of transitional care in rheumatology over the last few decades, yet universal implementation has not been realised and unmet needs continue to be reported. Possible explanations for this include lack of evidence as to which model is most effective; lack of attention to the multiple dimensions, stakeholders and systems involved in health transitions; and lack of consideration of the developmental appropriateness of transition interventions and the services/organisations/systems where such interventions are delivered. Successful transition has major implications to both the young people with juvenile-onset rheumatic disease and their families. Future research in this area will need to reflect both the multidimensional (biopsychosocial) and the multisystemic (multiple systems and stakeholders across personal/social/family support networks and health/social care/education systems). Only then will we be able to determine which aspects of transition readiness and service components influence which dimension. It is therefore imperative we continue to research and develop this area, involving both paediatric and adult rheumatology clinicians and researchers, remembering to look beyond both the condition and our discipline. Neither should we forget to tap into the exciting potential associated with digital technology to ensure further advances in transitional care are brought about in and beyond rheumatology

    A low-cost, easy-to-assemble device to prevent infant hyperthermia under conditions of high thermal stress

    Get PDF
    High ambient temperature and humidity greatly increase the risk of hyperthermia and mortality, particularly in infants, who are especially prone to dehydration. World areas at high risk of heat stress include many of the low-and middle-income countries (LMICs) where most of their inhabitants have no access to air conditioning. This study aimed to design, evaluate, and test a novel low-cost and easy-to-assemble device aimed at preventing the risk of infant hyperthermia in LMICs. The device is based on optimizing negative heat transfer from a small amount of ice and transferring it directly to the infant by airflow of refrigerated air. As a proof of concept, a device was assembled mainly using recycled materials, and its performance was assessed under laboratory-controlled conditions in a climatic chamber mimicking realistic stress conditions of high temperature and humidity. The device, which can be assembled by any layperson using easily available materials, provided sufficient refrigerating capacity for several hours from just 1–2 kg of ice obtained from a domestic freezer. Thus, application of this novel device may serve to attenuate the adverse effects of heat stress in infants, particularly in the context of the evolving climatic change trends. © 2021 by the authors. Licensee MDPI, Basel, Switzerland

    Exosomes and metabolic functionin mice exposed to alternating dark-light cycles mimicking night shift work schedules

    Get PDF
    Sleep is an important modulator of metabolic function. Disruptions of sleep in circadian rhythm are common in modern societies and are associated with increased risk of developing cardiometabolic disorders. Exosomes are ubiquitous extracellular vesicles that may play a mechanistic role in metabolic derangements. We hypothesized that alternating dark-light cycles mimicking shift work in mice would alter fecal microbiota and colonic epithelium permeability and alter plasma exosome cargo and metabolic function. C57BL/6 mice were randomly assigned to (i) control day light (CL), or (ii) inverted dark-light every 2 weeks for 8 weeks (IN). Body weight, fat mass and HOMA-IR were measured, along with Tregs, metabolic, and resident macrophages in visceral white adipose tissue (vWAT). Fecal water samples were incubated with confluent colonic epithelium cell cultures in electric cell-substrate impedance sensing (ECIS) arrays, and plasma exosomes were added to differentiated adipocytes and insulin-induced pAKT/AKT expression changes were assessed by western blots. Mice exposed to IN showed elevated HOMA-IR, and their fecal samples showed altered microbiota which promote increased permeability of the colonic epithelial cell barrier. Plasma exosomes decreased pAKT/AKT responses to exogenous insulin compared to CL, and altered expression of circadian clock genes. Inflammatory macrophages (Ly-6chigh) were increased in IN-exposed vWAT, while Tregs were decreased. Thus, gut microbiota and the cargo of plasma exosomes are altered by periodic shifts in environmental lighting, and effectively alter metabolic function, possibly via induction of systemic inflammation and altered clock expression in target tissues. Further exploration of exosomal miRNA signatures in shift workers and their putative metabolic organ cell targets appears warranted

    miR-542 promotes mitochondrial dysfunction and SMAD activity and is raised in ICU Acquired Weakness

    Get PDF
    Rationale: Loss of skeletal muscle mass and function is a common consequence of critical illness and a range of chronic diseases but the mechanisms by which this occurs are unclear. Objectives: We aimed to identify miRNAs that were increased in the quadriceps of patients with muscle wasting and to determine the molecular pathways by which they contributed to muscle dysfunction. Methods: miR-542-3p/-5p were quantified in the quadriceps of patients with COPD and intensive care unit acquired weakness (ICUAW). The effect of miR-542-3p/5p was determined on mitochondrial function and TGF-β signaling in vitro and in vivo. Measurements and main results: miR-542-3p/5p were elevated in patients with COPD but more markedly in patients with ICUAW. In vitro, miR-542-3p suppressed the expression of the mitochondrial ribosomal protein MRPS10, and reduced 12S rRNA expression suggesting mitochondrial ribosomal stress. miR-542-5p increased nuclear phospho-SMAD2/3 and suppressed expression of SMAD7, SMURF1 and PPP2CA, proteins that inhibit or reduce SMAD2/3 phosphorylation suggesting that miR-542-5p increased TGF-β signaling. In mice, miR-542 over-expression caused muscle wasting, reduced mitochondrial function, 12S rRNA expression and SMAD7 expression, consistent with the effects of the miRNAs in vitro. Similarly, in patients with ICUAW, the expression of 12S rRNA and of the inhibitors of SMAD2/3 phosphorylation were reduced, indicative of mitochondrial ribosomal stress and increased TGF-β signaling. In patients undergoing aortic surgery, pre-operative levels of miR-542-3p/5p were positively correlated with muscle loss following surgery. Conclusion; Elevated miR-542-3p/5p may cause muscle atrophy in ICU patients through the promotion of mitochondrial dysfunction and activation of SMAD2/3 phosphorylation

    Predictive significance of the six-minute walk distance for long-term survival in chronic hypercapnic respiratory failure

    Get PDF
    Background: The 6-min walk distance ( 6-MWD) is a global marker of functional capacity and prognosis in chronic obstructive pulmonary disease ( COPD), but less explored in other chronic respiratory diseases. Objective: To study the role of 6-MWD in chronic hypercapnic respiratory failure ( CHRF). Methods: In 424 stable patients with CHRF and non-invasive ventilation ( NIV) comprising COPD ( n = 197), restrictive diseases ( RD; n = 112) and obesity-hypoventilation- syndrome ( OHS; n = 115), the prognostic value of 6-MWD for long- term survival was assessed in relation to that of body mass index (BMI), lung function, respiratory muscle function and laboratory parameters. Results: 6-MWD was reduced in patients with COPD ( median 280 m; quartiles 204/350 m) and RD ( 290 m; 204/362 m) compared to OHS ( 360 m; 275/440 m; p <0.001 each). Overall mortality during 24.9 (13.1/40.5) months was 22.9%. In the 424 patients with CHRF, 6-MWD independently predicted mortality in addition to BMI, leukocytes and forced expiratory volume in 1 s ( p <0.05 each). In COPD, 6-MWD was strongly associated with mortality using the median {[} p <0.001, hazard ratio ( HR) = 3.75, 95% confidence interval (CI): 2.24-6.38] or quartiles as cutoff levels. In contrast, 6-MWD was only significantly associated with impaired survival in RD patients when it was reduced to 204 m or less (1st quartile; p = 0.003, HR = 3.31, 95% CI: 1.73-14.10), while in OHS 6-MWD had not any prognostic value. Conclusions: In patients with CHRF and NIV, 6-MWD was predictive for long- term survival particularly in COPD. In RD only severely reduced 6-MWD predicted mortality, while in OHS 6-MWD was relatively high and had no prognostic value. These results support a disease-specific use of 6-MWD in the routine assessment of patients with CHRF. Copyright (C) 2007 S. Karger AG, Basel
    corecore