715 research outputs found

    Gene Expression Profiling of Purified Rat Retinal Ganglion Cells

    Get PDF
    PURPOSE. The phenotype of specialized cells arises, in part, from their characteristic gene expression patterns. Retinal ganglion cells (RGCs) are of wide interest in neuroscience and die in glaucoma and other optic neuropathies. In this study the genes expressed by RGCs were profiled by expressed sequence tag (EST) analysis. METHODS. ESTs were generated from a cDNA library constructed from RGCs isolated by immunopanning. The RGC genes were compared with published microarray expression profiles from 13 different neural regions. Immunohistochemistry was performed by standard methods. RESULTS. Clustering of 4791 RGC ESTs identified 2360 unique gene clusters. Of these, 60% represented known genes, 27% uncharacterized genes/ESTs, and 13% novel sequence. Unexpectedly, one of the largest RGC clusters, RESP18, corresponded to a neuroendocrine-specific gene preferentially expressed in the hypothalamus. RESP18 immunoreactivity within the retina was found mainly in the RGC layer. DDAH1, a gene involved in nitric oxide metabolism, was localized to RGC and amacrine layers. Comparison of gene expression patterns across neuronal regions revealed a prominent subset of RGC genes that were overexpressed in dorsal root and trigeminal ganglia. To narrow the search for candidate disease-related genes, RGC genes were mapped to known disease loci for optic neuropathies. CONCLUSIONS. This work is one of the first efforts to profile gene expression in a purified population of retinal neurons, the RGCs. The profiling, in addition to revealing both known and novel genes underlying the RGC phenotype, also uncovered common patterns of gene expression between RGCs and other sensory ganglia. (Invest Ophthalmol Vis Sci

    Drusen of the iris: in advanced malignant choroidal melanoma

    Full text link
    Drusen were found in the iris between the layers of the pigment epithelium and the dilator muscle in an eye of a 52 year old patient that contained a large malignant choroidal melanoma. The significance of this unusual observation in comparison to the common drusen of Bruch's membrane of the choroid is discussed. In einem Auge einer 52jährigen Patientin, das wegen eines Melanoms der Aderhaut enukleiert werden mußte, fanden sich Drusen der Regenbogenhaut, die zwischen dem Pigmentepithel und dem Dilatator-Muskel lagen. Die Bedeutung dieser Drusen im Vergleich zu den Drusen der Aderhaut wird erörtert.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47368/1/417_2004_Article_BF00506637.pd

    High Throughput Automated Allele Frequency Estimation by Pyrosequencing

    Get PDF
    Pyrosequencing is a DNA sequencing method based on the principle of sequencing-by-synthesis and pyrophosphate detection through a series of enzymatic reactions. This bioluminometric, real-time DNA sequencing technique offers unique applications that are cost-effective and user-friendly. In this study, we have combined a number of methods to develop an accurate, robust and cost efficient method to determine allele frequencies in large populations for association studies. The assay offers the advantage of minimal systemic sampling errors, uses a general biotin amplification approach, and replaces dTTP for dATP-apha-thio to avoid non-uniform higher peaks in order to increase accuracy. We demonstrate that this newly developed assay is a robust, cost-effective, accurate and reproducible approach for large-scale genotyping of DNA pools. We also discuss potential improvements of the software for more accurate allele frequency analysis

    International Study Group Progress Report On Linear Collider Development

    Get PDF

    Conservation of resources theory and research use in health systems

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Health systems face challenges in using research evidence to improve policy and practice. These challenges are particularly evident in small and poorly resourced health systems, which are often in locations (in Canada and globally) with poorer health status. Although organizational resources have been acknowledged as important in understanding research use resource theories have not been a focus of knowledge translation (KT) research. What resources, broadly defined, are required for KT and how does their presence or absence influence research use?</p> <p>In this paper, we consider conservation of resources (COR) theory as a theoretical basis for understanding the capacity to use research evidence in health systems. Three components of COR theory are examined in the context of KT. First, resources are required for research uptake. Second, threat of resource loss fosters resistance to research use. Third, resources can be optimized, even in resource-challenged environments, to build capacity for KT.</p> <p>Methods</p> <p>A scan of the KT literature examined organizational resources needed for research use. A multiple case study approach examined the three components of COR theory outlined above. The multiple case study consisted of a document review and key informant interviews with research team members, including government decision-makers and health practitioners through a retrospective analysis of four previously conducted applied health research studies in a resource-challenged region.</p> <p>Results</p> <p>The literature scan identified organizational resources that influence research use. The multiple case study supported these findings, contributed to the development of a taxonomy of organizational resources, and revealed how fears concerning resource loss can affect research use. Some resources were found to compensate for other resource deficits. Resource needs differed at various stages in the research use process.</p> <p>Conclusions</p> <p>COR theory contributes to understanding the role of resources in research use, resistance to research use, and potential strategies to enhance research use. Resources (and a lack of them) may account for the observed disparities in research uptake across health systems. This paper offers a theoretical foundation to guide further examination of the COR-KT ideas and necessary supports for research use in resource-challenged environments.</p

    31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016) : part two

    Get PDF
    Background The immunological escape of tumors represents one of the main ob- stacles to the treatment of malignancies. The blockade of PD-1 or CTLA-4 receptors represented a milestone in the history of immunotherapy. However, immune checkpoint inhibitors seem to be effective in specific cohorts of patients. It has been proposed that their efficacy relies on the presence of an immunological response. Thus, we hypothesized that disruption of the PD-L1/PD-1 axis would synergize with our oncolytic vaccine platform PeptiCRAd. Methods We used murine B16OVA in vivo tumor models and flow cytometry analysis to investigate the immunological background. Results First, we found that high-burden B16OVA tumors were refractory to combination immunotherapy. However, with a more aggressive schedule, tumors with a lower burden were more susceptible to the combination of PeptiCRAd and PD-L1 blockade. The therapy signifi- cantly increased the median survival of mice (Fig. 7). Interestingly, the reduced growth of contralaterally injected B16F10 cells sug- gested the presence of a long lasting immunological memory also against non-targeted antigens. Concerning the functional state of tumor infiltrating lymphocytes (TILs), we found that all the immune therapies would enhance the percentage of activated (PD-1pos TIM- 3neg) T lymphocytes and reduce the amount of exhausted (PD-1pos TIM-3pos) cells compared to placebo. As expected, we found that PeptiCRAd monotherapy could increase the number of antigen spe- cific CD8+ T cells compared to other treatments. However, only the combination with PD-L1 blockade could significantly increase the ra- tio between activated and exhausted pentamer positive cells (p= 0.0058), suggesting that by disrupting the PD-1/PD-L1 axis we could decrease the amount of dysfunctional antigen specific T cells. We ob- served that the anatomical location deeply influenced the state of CD4+ and CD8+ T lymphocytes. In fact, TIM-3 expression was in- creased by 2 fold on TILs compared to splenic and lymphoid T cells. In the CD8+ compartment, the expression of PD-1 on the surface seemed to be restricted to the tumor micro-environment, while CD4 + T cells had a high expression of PD-1 also in lymphoid organs. Interestingly, we found that the levels of PD-1 were significantly higher on CD8+ T cells than on CD4+ T cells into the tumor micro- environment (p < 0.0001). Conclusions In conclusion, we demonstrated that the efficacy of immune check- point inhibitors might be strongly enhanced by their combination with cancer vaccines. PeptiCRAd was able to increase the number of antigen-specific T cells and PD-L1 blockade prevented their exhaus- tion, resulting in long-lasting immunological memory and increased median survival

    Comparative gene expression analysis of murine retina and brain.

    Get PDF
    PURPOSE: Several high-throughput studies have described gene expression in the central nervous system (CNS), and recently there has been increasing interest in analyzing how gene expression compares in different regions of the CNS. As the retina is often used as a model system to study CNS development and function, we compared retina and brain gene expression using microarray analyses. METHODS: Mouse retina, brain and liver RNA was hybridized to a custom cDNA microarray containing 5,376 genes and ESTs, and the data from the quantified scanned images were analyzed using Bioconductor and SAM. Preferential retina expression was confirmed by real-time PCR. The cellular distribution of genes newly identified as retina enriched genes was determined by immunohistochemistry. RESULTS: Using stringent statistical analyses we identified 733 genes that were preferentially expressed in retina and 389 in brain. The retina-liver hybridizations identified an additional 837 retina enriched genes. The cellular distribution in the retina was determined for two genes that had not previously been reported to be expressed in the retina, the transcription regulatory proteins EWS and PCPB1. Both proteins were found primarily in the inner nuclear layer. Finally, a comparison of the microarray data to publicly available SAGE and EST library databases demonstrated only limited overlap of the sets of retina enriched genes identified by the different methodologies. The preferential retinal expression of a subset of genes from the microarray, which were not identified as differentially expressed by other methods, was confirmed by quantitative PCR. CONCLUSIONS: The finding of differences in the groups of identified retina enriched genes from the various profiling techniques supports the use of multiple approaches to obtain a more complete description of retinal gene expression. Characterization of gene expression profiles of retina and brain may facilitate the understanding of the processes that underlie differences between the retina and other parts of the central nervous system

    Gene expression variation in the adult human retina.

    No full text
    Despite evidence that differences in gene expression levels contribute significantly to phenotypic variation across individuals, there has been only limited effort to study gene expression variation in human tissue. To characterize expression variation in the normal human retina, we utilized a custom retinal microarray to analyze 33 normal retinas from 19 donors, aged 29-90 years. Statistical models were designed to separate and quantify biological and technical sources of variation, including age, gender, eye laterality, gene function and age-by-gender interaction. Although the majority of the 9406 genes analyzed showed relatively stable expression levels across different donors (for an average gene the expression level value of 95 out of a 100 individuals fell within a 1.23-fold range), 2.6% of genes showed significant donor-to-donor variation, with a false discovery rate of 10%. The mean expression ratio standard deviation was 0.15+/-0.8, log2, with a range of 0.09-0.99. Genes selectively expressed in photoreceptors showed higher expression variation than other gene classes. Gender, age and other donor-specific factors contributed significantly to the expression variation of multiple genes, and groups of genes with an age- and gender-associated expression pattern were identified. Our findings show that a significant fraction of gene expression variation in the normal human retina is attributable to identifiable biological factors. The greater expression variability of many genes central to retinal function (including photoreceptor-specific genes) may be partially explained by the dynamics of the vision process, and raises the possibility that photoreceptor gene expression levels may contribute to phenotypic diversity across normal adult retinas. In addition, as such diversity may result in different levels of disease susceptibility, exploring its sources may provide insights into the pathogenesis of retinal disease

    Identification of gene expression changes associated with the progression of retinal degeneration in the rd1 mouse.

    Get PDF
    PURPOSE: One approach to gaining insight into the biological pathways contributing to rod and cone photoreceptor death is to identify patterns of gene expression changes. In the present study, a custom retinal microarray was developed to analyze the rd1 mouse, a well-characterized animal model of human retinal degeneration. METHODS: A microarray was constructed containing cDNA fragments corresponding to genes known or postulated to be involved in normal retinal function, development, and disease. Gene expression in rd1 retina was compared with age-matched control retinas at three time points: the peak of rod degeneration (postnatal day [P]14), early in cone degeneration (P35), and during cone degeneration (P50). Selected microarray results were confirmed with real-time PCR. The cellular distribution of one of the differentially expressed genes, dickkopf 3 (Dkk3), was assessed by in situ hybridization. RESULTS: At each stage of degeneration, there was only limited overlap of the genes that showed increased expression, suggesting the involvement of temporally distinct molecular pathways. Genes active in transport mechanisms and in signaling pathways were differentially expressed during rod degeneration, whereas genes with functions in protein modification and cellular metabolism were differentially expressed during cone degeneration. Increased expression of genes involved in cell proliferation pathways and oxidative stress was observed at each time point. CONCLUSIONS: These microarray results provide clues to understanding the molecular pathways underlying photoreceptor degeneration and indicate directions for future studies. In addition, comparisons of normal and degenerated retina identified numerous genes and ESTs that are potentially enriched in rod photoreceptors
    • …
    corecore