410 research outputs found

    The fossil record of early tetrapods: worker effort and the end-Permian mass extinction

    Get PDF
    It is important to understand the quality of the fossil record of early tetrapods (Tetrapoda, minus Lissamphibia and Amniota) because of their key role in the transition of vertebrates from water to land, their dominance of terrestrial faunas for over 100 million years of the late Palaeozoic and earlyMesozoic, and their variable fates during the end−Permian mass extinction. The first description of an early tetrapod dates back to 1824, and since then discoveries have occurred at a rather irregular pace, with peaks and troughs corresponding to some of the vicissitudes of human history through the past two centuries. As expected, the record is dominated by the well−sampled sedimentary basins of Europe and North America, but finds from other continents are increasing rapidly. Comparisons of snapshots of knowledge in 1900, 1950, and 2000 show that discovery of new species has changed the shape of the species−level diversification curve, contrary to earlier studies of family−level taxa. There is, however, little evidence that taxon counts relate to research effort (as counted by numbers of publications), and there are no biasing effects associated with differential study of different time intervals through the late Palaeozoic and Mesozoic. In fact, levels of effort are apparently not related to geological time, with no evidence that workers have spent more time on more recent parts of the record. In particular, the end−Permian mass extinction was investigated to determine whether diversity changes through that interval might reflect worker effort: it turns out that most records of early tetrapod taxa (when corrected for duration of geological series) occur in the Lower Triassic

    Optical issues for the diagnostic stations for the ELI-NP compton gamma source

    Get PDF
    A high brightness electron Linac is being built in the Compton Gamma Source at the ELI Nuclear Physics facility in Romania. To achieve the design luminosity, a train of 32 bunches, 16 ns spaced, with a nominal charge of 250 pC will collide with the laser beam in the interaction point. Electron beam spot size is measured with optical transition radiation (OTR) profile monitors. In order to measure the beam properties, the optical radiation detecting system must have the necessary accuracy and resolution. This paper deals with the studies of different optic configurations to achieve the magnification, resolution and accuracy in order to measure very small beam (below 30 ÎŒm) or to study the angular distribution of the OTR and therefore the energy of the beam. Several configurations of the optical detection line will be studied both with simulation tools (e.g. Zemax) and experimentally. The paper will deal also with the sensibility of optic system (in terms of depth of field, magnification and resolution) to systematic error

    When Madagascar produced natural rubber: a brief, forgotten yet informative history.

    Get PDF
    From 1891 to 1914, Madagascar, like other western African countries, was a production zone for forest rubber destined for export to Europe when Asian plantations where not yet sufficiently developed . Numerous species endemic to the forests of the three major Malagasy ecosystems were exploited, often with a view to maximising short term productivity without any consideration for the sustainable management of the resource. This episode represents one of the first cases of industrial exploitation of Madagascar's biological resources. Although Madagascar occupies a modest position on the world rubber market at that time, the exploitation of rubber bore major consequences for the island's forestry resources and, moreover, influenced the vision and discourse of scientists and politicians concerning their management. It was one of the factors triggering awareness of the value of Madagascar's biodiversity and the threat to which it might be exposed through poorly-controlled human activity. As a result, highly repressive and forcible legislation was introduced aimed at containing the activity practiced by local populations considered to be mostly to blame. But from the early days of French colonial rule, naturalists judged the outcomes of political decisions too weak to offer any guarantee of an effective defence. They responded by adopting an intentionally alarmist and catastrophist discourse with the object of provoking a reaction from the politicians, considered too lax. This discourse, in fact, took an about-turn from 1942-45 when the war effort led to a revitalisation of the Malagasy rubber sector as Asian production was mainly out of reach. A second consequence came in 1927 with the creation of a network of protected areas managed by naturalists, making Madagascar at that time, a pioneer in Africa. There was a simultaneous flurry of activity to promote the domestication of Malagasy rubber species, combined with the introduction of new species with high potential (Hevea brasiliensis, Castilloa elastica). However, with the emergence of far more profitable Asian rubber, all attempts at cultivation in Madagascar were abandoned when exploitation ceased to be profitable, and thus the Malagasy forests were redeemed. This episode demonstrates how it was in fact economic reality, by condemning an unprofitable sector, that was the real vehicle by which the survival of Malagasy rubber species was secured, and not the naturalists' discourse, nor the creation of protected zones, nor the promulgation of repressive legislations. This case study is of more than purely historical interest, in that it still has currency where, for example, the exploitation of Prunus africana is concerned

    STEM through Authentic Research and Training Program (START) for Underrepresented Communities: Adapting to the COVID-19 Pandemic

    Get PDF
    The STEM Through Authentic Research and Training (START) Program is a new program integrating academic, social, and professional experiences, in the theme of exomedicine, to build a pipeline into college for first generation and traditionally underrepresented students by providing year-round authentic opportunities and professional development for high school students and teachers. In response to the COVID-19 pandemic, the START Program has worked with the local Fayette County public school and community partners to provide content to over 300 students through: virtual laboratory tours with community partner Space Tango, meet a scientist discussions, and online near-peer student demonstrations aimed at making the practice of STEM disciplines approachable. Furthermore, the START Program has partnered with Higher Orbits to provide at-home, space-themed learning kits for students to develop teamwork, communication, and STEM principles while engaging in online content with teachers, professionals, and astronauts. Finally, the START Program has moved its training platforms online, including receiving College Reading and Learning Association (CRLA) Peer Educator accreditation for our near-peer mentoring and coaching training. As a result, the START Program is better positioned to address this critical need in STEM education, while reaching more students in the community than possible with face-to-face interactions alone

    Imaging of SNR IC443 and W44 with the Sardinia Radio Telescope at 1.5 GHz and 7 GHz

    Get PDF
    Observations of supernova remnants (SNRs) are a powerful tool for investigating the later stages of stellar evolution, the properties of the ambient interstellar medium, and the physics of particle acceleration and shocks. For a fraction of SNRs, multi-wavelength coverage from radio to ultra high-energies has been provided, constraining their contributions to the production of Galactic cosmic rays. Although radio emission is the most common identifier of SNRs and a prime probe for refining models, high-resolution images at frequencies above 5 GHz are surprisingly lacking, even for bright and well-known SNRs such as IC443 and W44. In the frameworks of the Astronomical Validation and Early Science Program with the 64-m single-dish Sardinia Radio Telescope, we provided, for the first time, single-dish deep imaging at 7 GHz of the IC443 and W44 complexes coupled with spatially-resolved spectra in the 1.5-7 GHz frequency range. Our images were obtained through on-the-fly mapping techniques, providing antenna beam oversampling and resulting in accurate continuum flux density measurements. The integrated flux densities associated with IC443 are S_1.5GHz = 134 +/- 4 Jy and S_7GHz = 67 +/- 3 Jy. For W44, we measured total flux densities of S_1.5GHz = 214 +/- 6 Jy and S_7GHz = 94 +/- 4 Jy. Spectral index maps provide evidence of a wide physical parameter scatter among different SNR regions: a flat spectrum is observed from the brightest SNR regions at the shock, while steeper spectral indices (up to 0.7) are observed in fainter cooling regions, disentangling in this way different populations and spectra of radio/gamma-ray-emitting electrons in these SNRs.Comment: 13 pages, 9 figures, accepted for publication to MNRAS on 18 May 201
    • 

    corecore