10 research outputs found

    Influence Of The Addition Of Lauric Acid To Films Made From Gelatin, Triacetin And A Blend Of Stearic And Palmitic Acids

    No full text
    The objective of this research was to verify the influence of adding increasing amounts of lauric acid on the functional properties of homogenized films made from gelatin, triacetin and a blend of palmitic and stearic acids. The films were characterised with respect to their visual aspect, water vapour permeability (WVP), water solubility, mechanical properties (tensile strength and percent elongation), oxygen permeability (O2P), opacity (OP) and melting and glass transitions temperatures. The films produced were malleable and macroscopically homogeneous. The addition of 1% of lauric acid to the film of gelatin, triacetin and blend of palmitic and stearic acids (5.84 ± 0.31 gmm · m-2 dkPa) caused a slight decrease in WVP. The additions of 2.5% (5.70 ± 0.76 gmm · m-2 dkPa), 5% (5.38 ± 0.64 gmm · m-2 dkPa) and 10% (4.50 ± 0.55 gmm · m-2 dkPa) of lauric acid were sufficient to make a significant difference in the WVP at the higher levels used. As compared to the gelatin and triacetin film, the addition of lauric acid at all the concentrations studied resulted in a slight increase in the film solubility. The addition of hydrophobic substances to gelatin/triacetin films (15.26 ± 0.28 cm3 · μm · m-2 dkPa) favoured an increase in O2P permeability, this effect being greater in the films made from gelatin, triacetin, blend of palmitic and stearic acids and 10% lauric acid (24.48 ± 0.07 cm3 · μm · m-2 dkPa). The increasing addition of lauric acid significantly reduced the tensile strength and increased elongation of the films composed of gelatin, triacetin and blend that being more evident at the concentrations of 5% (67.58 ± 1.23 MPa and 11.45 ± 0.57%) and 10% (63.50 ± 1.56 MPa and 12.90 ± 0.57%). The addition of 1% (OP, 27%) and 10% (OP, 28%) of lauric acid induced no visible effect on the opacity of the films. The thermogrammes showed three transitions for the gelatin/triacetin/stearic-palmitic blend/1% lauric acid films (-57.42°C, 23.74°C and 44.11°C) and two for the gelatin/triacetin/stearic-palmitic acids blend/10% lauric acid films (-56.22°C and 17.35°C). As observed by DSC, the addition of fatty acids resulted in the appearance of more than one melting peak for all films in relation to the gelatin and triacetin film. © 2005 Wiley-VCH Verlag GmbH & Co. KGaA.229143149(1995) ASTM, pp. E96-95(1995) ASTM, pp. D882(1990) ASTM, 1177, pp. D3985-81Baldwin, A., Nisperos, O., Hagenmaier, D., Baker, R.A., (1997) Food Technol., 51 (6), p. 56Bertan, L.C., Tanada-Palmu, P.S., Siani, A.C., Grosso, C.R.F., (2005) Food Hydrocol., 19 (1), p. 73Callegarin, F., Gallo, J.-A.Q., Debeaufort, F., (1997) Voilley.J.Am. Oil Chem. Soc., 74 (10), p. 1183Cherian, G., Gennadios, A., Weller, C., Chinachoti, P., (1995) Cereal Chem., 72 (1), p. 1Donhowe, I.G., Fennema, O., (1994) Edible Coating and Films to Improve Food Quality, p. 1. , J. M. Krotcha, E. A. Baldwin, M. O. Nisperos-Carriedo, Eds., Technomic Publishing Company Inc., LancasterFakhouri, F.M., Batista, J.A., Grosso, C.R.F., (2003) Braz. J. Food Technol., 6 (2), p. 301Gontard, N., Duchez, C., Cuq, J.-L., Guilbert, S., (1994) Int. J. Food Sci. Technol., 29, p. 50Kester, J.J., Fennema, O.R., (1986) Food Technol., 40 (12), p. 59Mchugh, T.H., (1996) Macromolecular Interactions in Food Technology, , N. Parris, A. Kato, L. K. Creamer, J. Pearce, EdsMchugh, T.H., Krochta, J.M., (1994) J. Am. Oil Chem. Soc., 71 (3), p. 312Pommet, M., Redl, A., Morel, M.-H., Guilbert, S., (2003) Polymer, 44 (1), p. 115Rhim, J.W., Wu, Y., Weller, C.L., Schinepf, M., (1999) J. Food Sci., 64 (1), p. 149Shellhammer, T.H., Krochta, J.M., (1997) J. Food Sci, 62 (2), p. 390Shih, F.F., (1996) Cereal Chem., 73 (3), p. 40

    Physicochemical Characterization Of Edible Starch Films With Barbados Cherry (malphigia Emarginata D.c.) [caracterização Físico-química De Filmes Comestíveis De Amido Adicionado De Acerola (malphigia Emarginata D.c.)]

    No full text
    Edibles flms are an alternative to synthetic materials used for packing food products. Barbados cherry is rich in vitamin C and carotenoids. The aim of this study was to characterize and develop flms by casting from cassava starch, lyophilized Barbados cherry pulp and glycerol. The flms were characterized with respect to thickness, water vapor permeability (WVP), water solubility, vitamin C, β carotene and mechanical properties. The interaction of pulp and glycerol reduced flm thickness. An increase in pulp concentration up to 60% increased WVP but beyond this concentration reduced both WVP and solubility leading to an increased level of vitamin C and β carotene in the flms.353546552Baumann, M.G., (1998) Antec'98, Conference Proceedings, , Atlanta, USADonhowe, I.G., Fennema, O., (1994) Em Edible Flms and Coatings: Characteristic, Formation, Defnitions and Testing Methods;, p. 1. , Krochta, J. M.Baldwin, E. A.Nisperos-Carriedo, M. O., eds.Technomic Publishing Company, Inc.: LancasterChen, H., (1995) J. Dairy Sci., 78, p. 2563Amarante, C., Banks, N.H., (2001) Horticultural Rev., 26, p. 161Cagri, A., Ryser, E.T., (2004) J. Food Protection, 67, p. 83Kester, J.J., Fennema, O., (1986) J. Food Technol., 40, p. 47Wang, X., Yang, K., Wang, Y., (2003) J. Macromol. Sci., 43, p. 385Ellis, R.P., Cochrane, M.P., Dale, M.F.B., Duffus, C.M., Lynn, A., Morrison, I.M., Prentice, R.D.M., Tiller, S.A., (1998) J. Sci. Food Agric., 77, p. 289Lourdin, D., Della-Valle, G., Colonna, P., (1995) Carbohydr. Polym., 27, p. 261Stading, M., Rindlav-Westling, A., Gatenholm, P., (2001) Carbohydr. Polym., 45, p. 209Cao, N., Fu, Y., He, J., (2007) J. Food Hydrocolloid, 21, p. 1153(1989) Annual Book of ASTAM Standards, p. 730. , American Society for Testing and Materials, ASTM;, ASTN: PhiladelphiaNazan Turhan, K., Sahbaz, F., (2004) J. Food Eng., 61, p. 459Gontard, N., Guilbert, S., Cuq, J.L., (1993) J. Food Sci., 58, p. 206(1995) Annual Book of ASTAM Standards, pp. D882-D883. , American Society for Testing and Materials, ASTM;, ASTM D: Philadelphia(1995) Annual Book of ASTAM Standards, pp. D828-D95a. , American Society for Testing and Materials, ASTM;, ASTM: PhiladelphiaVicentini, N.M., (2003) Tese de Doutorado, , Universidade Estadual Paulista Júlio de Mesquita Filho, BrasilGontard, N., Guilbert, S., Cuq, J.L., (1992) J. Food Sci., 57, p. 190Rosa, J.S., (2007) Ci. Tecnol. Alimentos, 27, p. 837Pacheco, S., (2009) Dissertação de Mestrado, , Universidade Federal Rural do Rio de Janeiro, BrasilShimazu, A.A., Mali, S., Grossmann, M.V.E., (2007) Semina: Ci. Agrárias, 28, p. 79Fakhouri, F.M., Batista, J.A., Grosso, C.R.F., (2003) Braz. J. Food Technol., 6, p. 301Rojas-Grau, M.A., Avena-Bustilhos, R.J., Olsen, C., Friedman, M., Henika, P.R., Martin-Belloso, O., Pan, Z.L., Mchugh, T.H., (2007) J. Food Eng., 81, p. 634Wang, X., Sun, X., Liu, H., Li, M., Ma, Z., (2010) Food Bioproducts Processing, p. 147Sothornvit, R., Pitak, N., (2007) Food Res. Int., 40, p. 365Sobral, P.J.A., (1999) Ci. e Eng., 8, p. 60Bertan, L.C., Fakhouri, F.M., Siani, A.C., (2005) Macromolecular Symposia, Germany, 229, p. 143Shen, X.L., Wu, J.M., Chen, Y., Zhao, G., (2010) J. Food Hydrocolloids, 24, p. 285Robertson, G., (1993) Food Packaging: Principles and Practice, , Marcel Dekker: New YorkRocha, G.O., (2009) Dissertação de Mestrado, , Universidade Federal Rural do Rio de Janeiro, BrasilOrtiz, R.J.A., (2009) Dissertação de Mestrado, , Universidade Federal Rural do Rio de Janeiro, BrasilYamashita, F., Nakagawa, A., Veiga, G.F., Mali, S., Grossmann, M.V.E., (2005) Braz. J. Food Technol., 8, p. 335Flores, S., Haedo, A.S., Campos, C., Gerschenson, L., (2007) Euro. Food Res. Technol., 225, p. 375Ayranci, E., Tunc, S., (2003) Food Chem., 80, p. 423Bertuzzi, M.A., Castro Vidaurre, E.F., Armada, M., Gottifredi, J.C., (2007) J. Food Eng., 80, p. 972Sothornvit, R., Rodsamran, P., (2008) Postharvest Biol. Technol., 47, p. 407Ziani, K., Oses, J., Coma, V., Mate, J.I., (2008) LWT - Food Sci. Technol., 41, p. 2159Lima, V.L.A., Mélo, E.A., Maciel, M.I.S., Lima, D.E.S., (2003) Ci. e Tecnol. Alimentos, 23, p. 101Romero-Bastida, C.A., Bello-Perez, L.A., Garcia, M.A., Martino, M.N., Solorza-Feria, J., Zaritzky, N.E., (2005) Carbohydr. Polym., 60, p. 235Mchugh, T.H., Olsen, C.W., (2004) Cooper. Program Nat. Res. U. S.-Jpn., p. 104Sothornvit, R., Krochta, J.M., (2000) J. Agric. Food Chem., 48, p. 6298Monterrey-Quintero, E.S., Sobral, P.J.A., (2000) Pesq. Agropec. Bras., 35, p. 179Mali, S., Grossmann, M.V.E., (2003) J. Agric. Food Chem., 51, p. 705

    Effect Of Fatty Acid Addition On The Properties Of Biopolymer Films Based On Lipophilic Maize Starch And Gelatin

    No full text
    In the presented work, composed layer films based on lipophilic starch and gelatin were produced containing different amounts of fatty acids (palmitic, lauric, myristic, capric, caproic and caprylic); i.e., 5, 15, 25 and 50%, using sorbitol as the plasticizer. All films were prepared by casting In an acrylic plate and their barrier properties (vapor permeability), as well as their mechanical (tensile strength and elongation), physicochemical (water solubility) and physical (opacity and thickness) properties were measured. The addition of fatty acids to the biopolymer films increased their thickness, opacity and elongation. On the other hand, the addition of fatty acids decreased the tensile strength and water vapor permeability of the biopolymer films for all formulations studied. The fatty acid concentration found to be effective In reducing the biopolymer film permeability varied between 15 and 25%. © 2009 WILEY-VCH Verlag GmbH & Co. KGaA.619528536Kester, J.J., Fennema, O.R., Edible films and coatings: A review (1986) Food Technol., 40, pp. 47-59Chen, H., Functional properties and applications of edible films made of milk proteins (1995) J. Dairy Sci., 78, pp. 2563-2583Krochta, J.M., De Mulder-Johnson, C.M., Edible and biodegradable polymer films: Challenges and opportunities (1997) Food Technol., 57, pp. 61-74Amarante, C., Banks, N.H., Silva, G., Gas exchange and ripening behaviour of coated pears (1997) Proc. Australian PostharvestHorticulture Conference, pp. 193-202. , Univ. Western Sydney, Richmond, NSW, AustraliaGontard, N., Duchez, C., Cuq, J.L., Guilbert, S., Edible composite films of wheat gluten and lipids: Water vapor permeability and other physical properties (1994) Int. J. Food Sci. Technol., 29, pp. 39-50Fennema, O.R., (1995) Food Chemistry, p. 249. , Marcel Dekker Inc., New York(1997) The Color Management Company. Universal Software, Version 3.2, , Hunterlab: RestonMethod E-96: Standard test methods for water vapor transmission of materials (1980) Annual Book of ASTM Standards, , American Society For Testing And Materials (ASTM): Conshohocken, PAMchugh, T.H., Krochta, J.M., Permeability properties of edible films (1994) Edible Coatings and Films to Improve Food Quality, , Eds. J. M. Krochta, E. A. Baldwin, M. Nisperos-DwellerCarriedo Technomic Publishing Co, Inc., Lancaster, PA, USAGennadlos, A., Mchugh, T.H., Weiler, C.L., Krochta, J.M., (1994) Edible coatings and films based on proteins, In: Edible Coatings and Films to Improve Food Quality, , Eds. J. M. Krochta, E. A. Baldwin, M. Nisperos-Carriedo Technomic Publishing Co, Inc., Lancaster, PA, USAMethod D 882-83: Standard test methods for tensile properties of thin plastic sheeting (1980) Annual Book of ASTM Standards, , American Society For Testing And Materials (ASTM): Conshohocken, PATanada-Palmu, P.S., Helen, H., Hyvonen, L., Preparation, properties and applications of wheat gluten edible films (2000) Agrie. Food Sci. Finland, 9, pp. 23-35Rhim, J.-W., Wu, Y., Weller, C.L., Schnepf, M., Physical characteristics of emulsified soy protein-fatty acid composite films (1999) Sciences des Aliments, 19 (1), pp. 57-71Fakhouri, F.M., (2003), Master Thesis. Universidade Estadual de CampinasBertan, L.C., (2003), Master Thesis. Universidade Estadual de CampinasKamper, S.L., Fennema, O., Water vapor permeability of edible bilayer films (1984) J. Food Sci., 49, pp. 1478-1481Kamper, S.L., Fennema, O., Water vapor permeability of an edible fatty acid bilayer film (1984) J. Food Sci., 49, pp. 1482-1485Greener, I.K., Fennema, O., Barrier properties and surface characteristics of edible, bilayer films (1989) J. Food Sci., 54 (6), pp. 1393-1399Yang, L., Paulson, A.T., Effects of lipids on mechanical and moisture barrier properties of edible gellan film (2000) Food Research International, 33 (7), pp. 571-578. , DOI 10.1016/S0963-9969(00)00093-4, PII S0963996900000934Wong, D.W.S., Gastineau, F.A., Gregorski, K.S., Tillin, S.J., Paviath, A.E., Edible chitosan-lipid films: Microstructure and surface energy (1992) J. Agric. Food Chem., 40, pp. 540-544Fakhouri, F.M., Batista, J.A., Grosso, C.R.F., Desenvolvimento e Caracterização de Filmes Comestíveis de Gelatina, Triacetina e Ácidos Graxos (2003) Brazilian J. Food Technol., 6 (2), pp. 301-308Perez-Gago, M.P., Krochta, J.M., Drying temperature effect on water vapor permeability and mechanical properties of whey protein-lipid emulsion films (2000) J. Agric. Food Chem., 57, pp. 60-74Park, J.W., Testin, R.F., Park, H.J., Vergano, P.J., Weller, C.L., Fatty acid concentration effect on tensile strength, elongation, and water vapor permeability of laminated edible films (1994) J. Food Sci., 59, pp. 916-91
    corecore