276 research outputs found

    Complete larval development of the hermit crabs Clibanarius aequabilis and Clibanarius erythropus (Decapoda : Anomura : Diogenidae), under laboratory conditions, with a revision of the larval features of genus Clibanarius

    Get PDF
    The complete larval development (four zoeae and one megalopa) of Clibanarius aequabilis and C. erythropus, reared under laboratory conditions, is described and illustrated. The larval stages of the two northeastern Atlantic Clibanarius species cannot be easily differentiated. Their morphological characters are compared with those of other known Clibanarius larvae. The genus Clibanarius is very homogeneous with respect to larval characters. All Clibanarius zoeae display a broad and blunt rostrum, smooth abdominal segments and an antennal scale without a terminal spine. Beyond the second zoeal stage, the fourth telson process is present as a fused spine, and the uropods are biramous. In the fourth larval stage all species display a mandibular palp. The Clibanarius megalopa presents weakly developed or no ocular scales, symmetrical chelipeds, apically curved corneous dactylus in the second and third pereiopods, and 5-11 setae on the posterior margin of the telson. Apart from the number of zoeal stages, Clibanarius species may be separated, beyond the second zoeal stage, by the telson formula and the morphology of the fourth telson process.info:eu-repo/semantics/publishedVersio

    Opposite feedback from mTORC1 to H-ras and K-ras4B downstream of SREBP1

    Get PDF
    As a major growth factor transducer, Ras is an upstream activator of mTORC1, which further integrates nutrient and energy inputs. To ensure a contextual coupling of cell division via Ras/MAPK-signalling and growth via mTORC1-signalling, feedback loops from one pathway back to the other are required. Here we describe a novel feedback from mTORC1, which oppositely affects oncogenic H-ras- and K-ras-signalling output, and as a consequence stemness properties of tumourigenic cells. Amino acid stimulation of mTORC1 increases the processed form of SREBP1, a major lipidome regulator. We show that modulation of the SREBP1 levels downstream of S6K1 has opposite effects on oncogenic H-ras and K-ras nanoscale membrane organisation, ensuing signalling output and promotion of mammospheres expressing these oncogenes. Our data suggest that modulation of phosphatidic acid, a major target of SREBP1 controlled lipid metabolism, is sufficient to affect H-ras and K-ras oppositely in the membrane. Thus mTORC1 activation increases H-ras-, but decreases K-ras-signalling output in cells transformed with the respective oncogene. Given the different impact of these two Ras isoforms on stemness, our results could have implications for stem cell biology and inhibition of cancer stem cells

    Contribution of magnetic resonance imaging in the diagnosis of talus skip metastases of Ewing's sarcoma of the calcaneus in a child: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Ewing's sarcoma of the calcaneus is rare. About thirty cases with calcaneus involvement have been reported in the literature. Talus skip metastases have rarely been described in the available literature</p> <p>Case presentation</p> <p>We report a case of a 14-year-old Moroccan boy, who presented with Ewing's sarcoma of his right calcaneus, diagnosed by swelling of the calcaneus evolving over a year. Radiography, computed tomography and magnetic resonance imaging showed an important tumoral process of the calcaneus and talus skip metastases. The diagnosis was confirmed with histology after a biopsy. In spite of amputation and postoperative chemotherapy, our patient died six months later due to secondary respiratory distress after lung metastasis.</p> <p>Conclusion</p> <p>Imaging, especially magnetic resonance, is important in the diagnosis of Ewing sarcoma and skeletal skip metastases. Treatment of Ewing's sarcoma consists of chemotherapy, radiation therapy and surgical resection depending on the stage and extent of the disease. With the exception of lesions in the calcaneus, the prognosis for disease-free survival of Ewing's sarcoma of the foot is excellent.</p

    Usefulness of an accelerated transoesophageal stress echocardiography in the preoperative evaluation of high risk severely obese subjects awaiting bariatric surgery

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Severe obesity is associated with an increased risk of coronary artery disease (CAD). Bariatric surgery is an effective procedure for long term weight management as well as reduction of comorbidities. Preoperative evaluation of cardiac operative risk may often be necessary but unfortunately standard imaging techniques are often suboptimal in these subjects. The purpose of this study was to demonstrate the feasibility, safety and utility of transesophageal dobutamine stress echocardiography (TE-DSE) using an adapted accelerated dobutamine infusion protocol in severely obese subjects with comorbidities being evaluated for bariatric surgery for assessing the presence of myocardial ischemia.</p> <p>Methods</p> <p>Subjects with severe obesity [body mass index (BMI) >40 kg/m<sup>2</sup>] with known or suspected CAD and being evaluated for bariatric surgery were recruited.</p> <p>Results</p> <p>Twenty subjects (9M/11F), aged 50 ± 8 years (mean ± SD), weighing 141 ± 21 kg and with a BMI of 50 ± 5 kg/m<sup>2 </sup>were enrolled in the study and underwent a TE-DSE. The accelerated dobutamine infusion protocol used was well tolerated. Eighteen (90%) subjects reached their target heart rate with a mean intubation time of 13 ± 4 minutes. Mean dobutamine dose was 31.5 ± 9.9 ug/kg/min while mean atropine dose was 0.5 ± 0.3 mg. TE-DSE was well tolerated by all subjects without complications including no significant arrhythmia, hypotension or reduction in blood arterial saturation. Two subjects had abnormal TE-DSE suggestive of myocardial ischemia. All patients underwent bariatric surgery with no documented cardiovascular complications.</p> <p>Conclusions</p> <p>TE-DSE using an accelerated infusion protocol is a safe and well tolerated imaging technique for the evaluation of suspected myocardial ischemia and cardiac operative risk in severely obese patients awaiting bariatric surgery. Moreover, the absence of myocardial ischemia on TE-DSE correlates well with a low operative risk of cardiac event.</p

    Mutations in a member of the ADAMTS gene family cause thrombotic thrombocytopenic purpura

    Full text link
    Thrombotic thrombocytopenic purpura (TTP) is a life-threatening systemic illness of abrupt onset and unknown cause. Proteolysis of the blood-clotting protein von Willebrand factor (VWF) observed in normal plasma is decreased in TTP patients. However, the identity of the responsible protease and its role in the pathophysiology of TTP remain unknown. We performed genome-wide linkage analysis in four pedigrees of humans with congenital TTP and mapped the responsible genetic locus to chromosome 9q34. A predicted gene in the identifed interval corresponds to a segment of a much larger transcript, identifying a new member of the ADAMTS family of zinc metalloproteinase genes (ADAMTS13). Analysis of patients' genomic DNA identified 12 mutations in the ADAMTS13 gene, accounting for 14 of the 15 disease alleles studied. We show that deficiency of ADAMTS13 is the molecular mechanism responsible for TTP, and suggest that physiologic proteolysis of VWF and/or other ADAMTS13 substrates is required for normal vascular homeostasis.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/62592/1/413488a0.pd

    Complement C5a and clinical markers as predictors of COVID-19 disease severity and mortality in a multi-ethnic population

    Get PDF
    Coronavirus disease-2019 (COVID-19) was declared as a pandemic by WHO in March 2020. SARS-CoV-2 causes a wide range of illness from asymptomatic to life-threatening. There is an essential need to identify biomarkers to predict disease severity and mortality during the earlier stages of the disease, aiding treatment and allocation of resources to improve survival. The aim of this study was to identify at the time of SARS-COV-2 infection patients at high risk of developing severe disease associated with low survival using blood parameters, including inflammation and coagulation mediators, vital signs, and pre-existing comorbidities. This cohort included 89 multi-ethnic COVID-19 patients recruited between July 14th and October 20th 2020 in Doha, Qatar. According to clinical severity, patients were grouped into severe (n=33), mild (n=33) and asymptomatic (n=23). Common routine tests such as complete blood count (CBC), glucose, electrolytes, liver and kidney function parameters and markers of inflammation, thrombosis and endothelial dysfunction including complement component split product C5a, Interleukin-6, ferritin and C-reactive protein were measured at the time COVID-19 infection was confirmed. Correlation tests suggest that C5a is a predictive marker of disease severity and mortality, in addition to 40 biological and physiological parameters that were found statistically significant between survivors and non-survivors. Survival analysis showed that high C5a levels, hypoalbuminemia, lymphopenia, elevated procalcitonin, neutrophilic leukocytosis, acute anemia along with increased acute kidney and hepatocellular injury markers were associated with a higher risk of death in COVID-19 patients. Altogether, we created a prognostic classification model, the CAL model (C5a, Albumin, and Lymphocyte count) to predict severity with significant accuracy. Stratification of patients using the CAL model could help in the identification of patients likely to develop severe symptoms in advance so that treatments can be targeted accordingly

    Regulatory T Cell Expansion in HTLV-1 and Strongyloidiasis Co-infection Is Associated with Reduced IL-5 Responses to Strongyloides stercoralis Antigen

    Get PDF
    Human strongyloidiasis varies from a mild, controlled infection to a severe frequently fatal disseminated infection depending on the hosts. Patients infected with the retrovirus HTLV-1 have more frequent and more severe forms of strongyloidiasis. It is not clear how human strongyloidiasis is controlled by the immune system and how HTLV-1 infection affects this control. We hypothesize that HTLV-1 leads to dissemination of Strongyloides stercoralis by augmenting regulatory T cell numbers, which in turn down regulate the immune response to the parasite. In our study, patients with HTLV-1 and Strongyloides co-infection had higher parasite burdens than patients with only strongyloidiasis. Eosinophils play an essential role in control of strongyloidiasis in animal models, and eosinophil counts were decreased in the HTLV-1 and Strongyloides stercoralis co-infected subjects compared to patients with only strongyloidiasis. The proportion of T cells with a regulatory cell phenotype was increased in HTLV-1 positive subjects co-infected with strongyloidiasis compared to patients with only strongyloidiasis. IL-5 is a key host molecule in stimulating eosinophil production and activation, and Strongyloides stercoralis antigen-specific IL-5 responses were reduced in strongyloidiasis/HTLV-1 co-infected patients. Reduced IL-5 responses and eosinophil counts were inversely correlated to the number of regulatory T cells. These findings suggest a role for regulatory T cells in susceptibility to Strongyloides hyperinfection

    Activated MCTC mast cells infiltrate diseased lung areas in cystic fibrosis and idiopathic pulmonary fibrosis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Although mast cells are regarded as important regulators of inflammation and tissue remodelling, their role in cystic fibrosis (CF) and idiopathic pulmonary fibrosis (IPF) has remained less studied. This study investigates the densities and phenotypes of mast cell populations in multiple lung compartments from patients with CF, IPF and never smoking controls.</p> <p>Methods</p> <p>Small airways, pulmonary vessels, and lung parenchyma were subjected to detailed immunohistochemical analyses using lungs from patients with CF (20 lung regions; 5 patients), IPF (21 regions; 7 patients) and controls (16 regions; 8 subjects). In each compartment the densities and distribution of MC<sub>T </sub>and MC<sub>TC </sub>mast cell populations were studied as well as the mast cell expression of IL-6 and TGF-β.</p> <p>Results</p> <p>In the alveolar parenchyma in lungs from patients with CF, MC<sub>TC </sub>numbers increased in areas showing cellular inflammation or fibrosis compared to controls. Apart from an altered balance between MC<sub>TC </sub>and MC<sub>T </sub>cells, mast cell in CF lungs showed elevated expression of IL-6. In CF, a decrease in total mast cell numbers was observed in small airways and pulmonary vessels. In patients with IPF, a significantly elevated MC<sub>TC </sub>density was present in fibrotic areas of the alveolar parenchyma with increased mast cell expression of TGF-β. The total mast cell density was unchanged in small airways and decreased in pulmonary vessels in IPF. Both the density, as well as the percentage, of MC<sub>TC </sub>correlated positively with the degree of fibrosis. The increased density of MC<sub>TC</sub>, as well as MC<sub>TC </sub>expression of TGF-β, correlated negatively with patient lung function.</p> <p>Conclusions</p> <p>The present study reveals that altered mast cell populations, with increased numbers of MC<sub>TC </sub>in diseased alveolar parenchyma, represents a significant component of the histopathology in CF and IPF. The mast cell alterations correlated to the degree of tissue remodelling and to lung function parameters. Further investigations of mast cells in these diseases may open for new therapeutic strategies.</p

    Normalisation to Blood Activity Is Required for the Accurate Quantification of Na/I Symporter Ectopic Expression by SPECT/CT in Individual Subjects

    Get PDF
    The utilisation of the Na/I symporter (NIS) and associated radiotracers as a reporter system for imaging gene expression is now reaching the clinical setting in cancer gene therapy applications. However, a formal assessment of the methodology in terms of normalisation of the data still remains to be performed, particularly in the context of the assessment of activities in individual subjects in longitudinal studies. In this context, we administered to mice a recombinant, replication-incompetent adenovirus encoding rat NIS, or a human colorectal carcinoma cell line (HT29) encoding mouse NIS. We used 99mTc pertechnetate as a radiotracer for SPECT/CT imaging to determine the pattern of ectopic NIS expression in longitudinal kinetic studies. Some animals of the cohort were culled and NIS expression was measured by quantitative RT-PCR and immunohistochemistry. The radioactive content of some liver biopsies was also measured ex vivo. Our results show that in longitudinal studies involving datasets taken from individual mice, the presentation of non-normalised data (activity expressed as %ID/g or %ID/cc) leads to ‘noisy’, and sometimes incoherent, results. This variability is due to the fact that the blood pertechnetate concentration can vary up to three-fold from day to day. Normalisation of these data with blood activities corrects for these inconsistencies. We advocate that, blood pertechnetate activity should be determined and used to normalise the activity measured in the organ/region of interest that expresses NIS ectopically. Considering that NIS imaging has already reached the clinical setting in the context of cancer gene therapy, this normalisation may be essential in order to obtain accurate and predictive information in future longitudinal clinical studies in biotherapy
    corecore