31 research outputs found

    Impact of uniaxial strain and doping on oxygen diffusion in CeO2

    Get PDF
    Doped ceria is an important electrolyte for solid oxide fuel cell applications. Molecular dynamics simulations have been used to investigate the impact of uniaxial strain along the directions and rare-earth doping (Yb, Er, Ho, Dy, Gd, Sm, Nd, and La) on oxygen diffusion. We introduce a new potential model that is able to describe the thermal expansion and elastic properties of ceria to give excellent agreement with experimental data. We calculate the activation energy of oxygen migration in the temperature range 900-1900K for both unstrained and rare-earth doped ceria systems under tensile strain. Uniaxial strain has a considerable effect in lowering the activation energies of oxygen migration. A more pronounced increase in oxygen diffusivities is predicted at the lower end of the temperature range for all the dopants considered

    Flexible Cognitive Strategies during Motor Learning

    Get PDF
    Visuomotor rotation tasks have proven to be a powerful tool to study adaptation of the motor system. While adaptation in such tasks is seemingly automatic and incremental, participants may gain knowledge of the perturbation and invoke a compensatory strategy. When provided with an explicit strategy to counteract a rotation, participants are initially very accurate, even without on-line feedback. Surprisingly, with further testing, the angle of their reaching movements drifts in the direction of the strategy, producing an increase in endpoint errors. This drift is attributed to the gradual adaptation of an internal model that operates independently from the strategy, even at the cost of task accuracy. Here we identify constraints that influence this process, allowing us to explore models of the interaction between strategic and implicit changes during visuomotor adaptation. When the adaptation phase was extended, participants eventually modified their strategy to offset the rise in endpoint errors. Moreover, when we removed visual markers that provided external landmarks to support a strategy, the degree of drift was sharply attenuated. These effects are accounted for by a setpoint state-space model in which a strategy is flexibly adjusted to offset performance errors arising from the implicit adaptation of an internal model. More generally, these results suggest that strategic processes may operate in many studies of visuomotor adaptation, with participants arriving at a synergy between a strategic plan and the effects of sensorimotor adaptation

    Dynamic approach to assessing food quality and safety characteristics: the case of processed foods

    No full text
    Consumers expect that food products will be safe and convenient to use and still have all the qualities of a fresh product. Foods often undergo processing, which has three major aims: to make food safe while providing products with the highest quality attributes, to transform food into forms that are more convenient or more appealing, and to extend shelf-life. Food processes such as thermally based ones (i.e. pasteurization and drying) or frozen storage occur in time-varying temperature conditions. Mathematical models that describe/predict changes in processed food characteristics with accuracy and precision in realistic, dynamic conditions are important tools in the development of new products and control systems. In this chapter, mathematical models that include time-varying temperature conditions (i.e. dynamic approach) will be presented for two relevant situations in the domain of processed foods: the case of microbial thermal inactivation and the case of food quality alterations under frozen storage
    corecore