24 research outputs found

    Tetrahymena Metallothioneins Fall into Two Discrete Subfamilies

    Get PDF
    BACKGROUND: Metallothioneins are ubiquitous small, cysteine-rich, multifunctional proteins which can bind heavy metals. METHODOLOGY/PRINCIPAL FINDINGS: We report the results of phylogenetic and gene expression analyses that include two new Tetrahymena thermophila metallothionein genes (MTT3 and MTT5). Sequence alignments of all known Tetrahymena metallothioneins have allowed us to rationalize the structure of these proteins. We now formally subdivide the known metallothioneins from the ciliate genus Tetrahymena into two well defined subfamilies, 7a and 7b, based on phylogenetic analysis, on the pattern of clustering of Cys residues, and on the pattern of inducibility by the heavy metals Cd and Cu. Sequence alignment also reveals a remarkably regular, conserved and hierarchical modular structure of all five subfamily 7a MTs, which include MTT3 and MTT5. The former has three modules, while the latter has only two. Induction levels of the three T. thermophila genes were determined using quantitative real time RT-PCR. Various stressors (including heavy metals) brought about dramatically different fold-inductions for each gene; MTT5 showed the highest fold-induction. Conserved DNA motifs with potential regulatory significance were identified, in an unbiased way, upstream of the start codons of subfamily 7a MTs. EST evidence for alternative splicing in the 3′ UTR of the MTT5 mRNA with potential regulatory activity is reported. CONCLUSION/SIGNIFICANCE: The small number and remarkably regular structure of Tetrahymena MTs, coupled with the experimental tractability of this model organism for studies of in vivo function, make it an attractive system for the experimental dissection of the roles, structure/function relationships, regulation of gene expression, and adaptive evolution of these proteins, as well as for the development of biotechnological applications for the environmental monitoring of toxic substances

    Bio-composting oil palm waste for improvement of soil fertility

    Get PDF
    Sources of bio-compost as agro-industrial wastes includes wide range of oil palm wastes viz. waste, biomass, palm kernels, empty fruit bunch, mill effluent, trunk and frond compost. Various composting processes are summarized in brief with distinct reference of oil–palm composting covering aerated static pile, and co-composting with earthworms (vermicomposting). However, in-vessel composting and windrow composting has meritorious advantages in composting. This review article refers to various significant roles played by microorganisms associated. Noteworthy study of bio-compost applications and procedures are correspondingly glosses framework of ecological, economical and agro-ecosystemic benefits
    corecore