32 research outputs found

    Plant species diversity for sustainable management of crop pests and diseases in agroecosystems: a review

    Full text link

    Surface Integrity governs the proteome of hypomineralised MJ

    No full text
    Growing interest in the treatment and prevention of Molar/Incisor Hypomineralization (MIH) warrants investigation into the protein composition of hypomineralized enamel. Hypothesizing abnormality akin to amelogenesis imperfecta, we profiled proteins in hypomineralized enamel from human permanent first molars using a biochemical approach. Hypomineralized enamel was found to have from 3- to 15-fold higher protein content than normal, but a near-normal level of residual amelogenins. This distinguished MIH from hypomaturation defects with high residual amelo- genins (amelogenesis imperfecta, fluorosis) and so typified it as a hypocalcification defect. Second, hypo- mineralized enamel was found to have accumulated various proteins from oral fluid and blood, with dif- ferential incorporation depending on integrity of the enamel surface. Pathogenically, these results point to a pre-eruptive disturbance of mineralization involving albumin and, in cases with post-eruptive breakdown, subsequent protein adsorption on the exposed hydroxy- apatite matrix. These insights into the pathogenesis and properties of hypomineralized enamel hold significance for prevention and treatment of MIH

    Characterisation of developmentally hypomineralised human enamel

    Get PDF
    OBJECTIVES: To investigate and clarify physical and chemical properties of enamel affected by molar incisor hypomineralisation (MIH). METHODS: A series of in vitro studies were performed on extracted molars affected by MIH and sound teeth for controls. Tooth sections underwent Vickers microhardness testing before lapping and subsequent transverse microradiographic analysis and examination under polarised light microscopy. Carbonate content was determined by CO2 release from acid digestion. Unprepared and fractured surfaces were examined under scanning electron microscopy. RESULTS: MIH-affected molars demonstrated a severe degree of hypomineralisation with an average mineral content of only 58.8%vol% mineral. Vickers microhardness was significantly reduced in MIH compared with controls (1.8±1.1 v 4.4±1.0 GPa, p<0.05) and polarised light microscopy revealed the bulk of MIH lesions had a porosity of ≤5% but also substantial areas of ≥10% and smaller areas exceeding 25% porosity. A surface layer was frequently observed on both intact and broken-down lesions and cervical regions of MIH teeth were typically spared. Carbonate content of MIH enamel was higher than control samples (6.6±2.1 v 4.4±1.1 wt%, p<0.05). Scanning electron microscopy showed that both the enamel rod and surface ultrastructure were defective. Clinical characteristics did not consistently correlate with all properties. CONCLUSIONS: The properties of MIH-affected enamel significantly differ from those of normal enamel and were highly variable, however some common characteristics were observed. Implications for aetiology and clinical management are discussed

    Letter to the editor

    No full text
    corecore