478 research outputs found

    3D Flapping Trajectory of a Micro-Air-Vehicle and its Application to Unsteady Flow Simulation

    Get PDF
    [[abstract]]A three-dimensional (3D) trajectory detection framework using two high-speed cameras for the flapping flexible wing of a micro-air-vehicle (MAV) is presented. This MAV, which is called the “Golden Snitch”, has a successful flight record of 8 minutes. We embed the flexible wingskin with a nine light emitting diode (LED) array as the light enhancing marker and capsulate it with parylene (poly-para-xylylene) as the protection layer. We confirm an oblique figure of eight trajectory of this MAV’s wing with time-varying coordinate data. The corresponding aerofoil of the main wings’ profiles was subjected to the time-varying coordinate data, yielding a resolution of a 1/70 wing beating cycle of 15Hz flapping. The trajectory information is first demonstrated as the moving boundaries of an unsteady flow simulation around a flapping flexible wing.[[notice]]補正完畢[[journaltype]]國外[[incitationindex]]SCI[[ispeerreviewed]]Y[[booktype]]電子版[[booktype]]紙本[[countrycodes]]HR

    Exchange coupling between Cr and ferromagnetic thin films

    Get PDF
    Exchange bias has been observed in Ni81Fe19/Cr bilayers. The exchange bias field for Cr thickness tCr larger than 62 Å increases with tCr and levels off at tCr=150 Å, whereas coercivity increases without saturation. The blocking temperature increases with the Cr thickness. Due to the presence of commensurate spin density waves in the thicker but strained Cr layers, blocking temperature as much as 425 K has been observed. Exchange bias has also been observed in Co/Cr bilayers

    Zeroes of the Jones polynomial

    Full text link
    We study the distribution of zeroes of the Jones polynomial VK(t)V_K(t) for a knot KK. We have computed numerically the roots of the Jones polynomial for all prime knots with N10N\leq 10 crossings, and found the zeroes scattered about the unit circle t=1|t|=1 with the average distance to the circle approaching a nonzero value as NN increases. For torus knots of the type (m,n)(m,n) we show that all zeroes lie on the unit circle with a uniform density in the limit of either mm or nn\to \infty, a fact confirmed by our numerical findings. We have also elucidated the relation connecting the Jones polynomial with the Potts model, and used this relation to derive the Jones polynomial for a repeating chain knot with 3n3n crossings for general nn. It is found that zeroes of its Jones polynomial lie on three closed curves centered about the points 1,i1, i and i-i. In addition, there are two isolated zeroes located one each near the points t±=e±2πi/3t_\pm = e^{\pm 2\pi i/3} at a distance of the order of 3(n+2)/23^{-(n+2)/2}. Closed-form expressions are deduced for the closed curves in the limit of nn\to \infty.Comment: 12 pages, 5 figure

    Tibetan sheep are better able to cope with low energy intake than Small-tailed Han sheep due to lower maintenance energy requirements and higher nutrient digestibilities

    No full text
    Tibetan sheep are indigenous to the Qinghai-Tibetan Plateau (QTP) and are well-adapted to and even thrive under the harsh alpine conditions. Small-tailed Han sheep were introduced to the plateau because of their high prolificacy and are maintained mainly in feedlots. Because of their different backgrounds, we hypothesised that Tibetan and Small-tailed Han sheep would differ in their utilization of energy intake and predicted that Tibetan sheep would cope better with low energy intake than Small-tailed Han sheep. To test this prediction, we determined nutrient digestibilities, energy requirements for maintenance and blood metabolite and hormone concentrations involved in energy metabolism in these breeds. Sheep of each breed (n = 24 of each, all wethers and 1.5 years of age) were distributed randomly into one of four groups and offered ad libitum diets of different digestible energy (DE) densities: 8.21, 9.33, 10.45 and 11.57 MJ DE/kg Dry matter (DM). Following 42 d of measuring feed intake, a 1-week digestion and metabolism experiment was done. DM intakes did not differ between breeds nor among treatments but, by design, DE intake increased linearly in both breeds as dietary energy level increased (P < 0.001). The average daily gain (ADG) was significantly greater in the Tibetan than Small-tailed Han sheep (P = 0.003) and increased linearly in both breeds (P < 0.001). In addition, from the regression analysis of ADG on DE intake, daily DE maintenance requirements were lower for Tibetan than for Small-tailed Han sheep (0.41 vs 0.50 MJ/BW0.75, P < 0.05). The DE and metabolizable energy (ME) digestibilities were higher in the Tibetan than Small-tailed Han sheep (P < 0.001) and increased linearly as the energy level increased in the diet (P < 0.001). At the lowest energy treatment, Tibetan sheep when compared with Small-tailed Han sheep, had: 1) higher serum glucose and glucagon, but lower insulin concentrations (P < 0.05), which indicated a higher capacity for gluconeogenesis and ability to regulate glucose metabolism; and 2) higher non-esterified fatty acids (NEFA) and lower very low density lipoprotein (VLDL) and triglyceride (TG) concentrations (P < 0.05), which indicated a higher capacity for NEFA oxidation but lower ability for triglyceride (TG) synthesis. We concluded that our prediction was supported as these differences between breeds conferred an advantage for Tibetan over Small-tailed Han sheep to cope better with low energy diets

    Lifetime elongation for wireless sensor network using queue-based approaches

    Get PDF
    A wireless sensor network (WSN) is envisioned as a cluster of tiny power-constrained devices with functions of sensing and communications. Sensors closer to a sink node have a larger forwarding traffic burden and consume more energy than nodes further away from the sink. The whole lifetime of WSN is deteriorated because of such an uneven node power consumption patterns, leading to what is known as an energy hole problem (EHP). From open literatures, most research works have focused on how to optimally increase the probability of sleeping states using various wake-up strategies. In this article, we propose a novel power-saving scheme to alleviate the EHP based on the N-policy M/M/1 queuing theory. With little or no extra management cost, the proposed queue-based power-saving technique can be applied to prolong the lifetime of the WSN economically and effectively. A mathematical analysis on the optimal control parameter has been made in detail. Focusing on many-to-one WSN, numerical and network simulation results validate that the proposed approach indeed provides a feasibly cost-effective approach for lifetime elongation of WSN

    Potts model on recursive lattices: some new exact results

    Full text link
    We compute the partition function of the Potts model with arbitrary values of qq and temperature on some strip lattices. We consider strips of width Ly=2L_y=2, for three different lattices: square, diced and `shortest-path' (to be defined in the text). We also get the exact solution for strips of the Kagome lattice for widths Ly=2,3,4,5L_y=2,3,4,5. As further examples we consider two lattices with different type of regular symmetry: a strip with alternating layers of width Ly=3L_y=3 and Ly=m+2L_y=m+2, and a strip with variable width. Finally we make some remarks on the Fisher zeros for the Kagome lattice and their large q-limit.Comment: 17 pages, 19 figures. v2 typos corrected, title changed and references, acknowledgements and two further original examples added. v3 one further example added. v4 final versio

    Steroid-like compounds in Chinese medicines promote blood circulation via inhibition of Na+/K+-ATPase

    Get PDF
    Aim: To examine if steroid-like compounds found in many Chinese medicinal products conventionally used for the promotion of blood circulation may act as active components via the same molecular mechanism triggered by cardiac glycosides, such as ouabain. Methods: The inhibitory potency of ouabain and the identified steroid-like compounds on Na+/K+-ATPase activity was examined and compared. Molecular modeling was exhibited for the docking of these compounds to Na+/K+-ATPase. Results: All the examined steroid-like compounds displayed more or less inhibition on Na+/K+-ATPase, with bufalin (structurally almost equivalent to ouabain) exhibiting significantly higher inhibitory potency than the others. In the pentacyclic triterpenoids examined, ursolic acid and oleanolic acid were moderate inhibitors of Na+/K+-ATPase, and their inhibitory potency was comparable to that of ginsenoside Rh2. The relatively high inhibitory potency of ursolic acid or oleanolic acid was due to the formation of a hydrogen bond between its carboxyl group and the Ile322 residue in the deep cavity close to two K+ binding sites of Na+/K+-ATPase. Moreover, the drastic difference observed in the inhibitory potency of ouabain, bufalin, ginsenoside Rh2, and pentacyclic triterpenoids is ascribed mainly to the number of hydrogen bonds and partially to the strength of hydrophobic interaction between the compounds and residues around the deep cavity of Na+/K+-ATPase. Conclusion: Steroid-like compounds seem to contribute to therapeutic effects of many cardioactive Chinese medicinal products. Chinese herbs, such as Prunella vulgaris L, rich in ursolic acid, oleanolic acid and their glycoside derivatives may be adequate sources for cardiac therapy via effective inhibition on Na+/K+-ATPase

    Three electron beams from a laser-plasma wakefield accelerator and the energy apportioning question

    Get PDF
    Laser-wakefield accelerators are compact devices capable of delivering ultra-short electron bunches with pC-level charge and MeV-GeV energy by exploiting the ultra-high electric fields arising from the interaction of intense laser pulses with plasma. We show experimentally and through numerical simulations that a high-energy electron beam is produced simultaneously with two stable lower-energy beams that are ejected in oblique and counter-propagating directions, typically carrying off 5-10% of the initial laser energy. A MeV, 10s nC oblique beam is ejected in a 30-60 degree hollow cone, which is filled with more energetic electrons determined by the injection dynamics. A nC-level, 100s keV backward-directed beam is mainly produced at the leading edge of the plasma column. We discuss the apportioning of absorbed laser energy amongst the three beams. Knowledge of the distribution of laser energy and electron beam charge, which determine the overall efficiency, is important for various applications of laser-wakefield accelerators, including the development of staged high-energy accelerators
    corecore