47 research outputs found
Simulation study of Non-ergodicity Transitions: Gelation in Colloidal Systems with Short Range Attractions
Computer simulations were used to study the gel transition occurring in
colloidal systems with short range attractions. A colloid-polymer mixture was
modelled and the results were compared with mode coupling theory expectations
and with the results for other systems (hard spheres and Lennard Jones). The
self-intermediate scattering function and the mean squared displacement were
used as the main dynamical quantities. Two different colloid packing fractions
have been studied. For the lower packing fraction, -scaling holds and
the wave-vector analysis of the correlation function shows that gelation is a
regular non-ergodicity transition within MCT. The leading mechanism for this
novel non-ergodicity transition is identified as bond formation caused by the
short range attraction. The time scale and diffusion coefficient also show
qualitatively the expected behaviour, although different exponents are found
for the power-law divergences of these two quantities. The non-Gaussian
parameter was also studied and very large correction to Gaussian behaviour
found. The system with higher colloid packing fraction shows indications of a
nearby high-order singularity, causing -scaling to fail, but the
general expectations for non-ergodicity transitions still hold.Comment: 13 pages, 15 figure
Dynamic contrast-enhanced CT compared with positron emission tomography CT to characterise solitary pulmonary nodules : the SPUtNIk diagnostic accuracy study and economic modelling
Background
Current pathways recommend positron emission tomography–computerised tomography for the characterisation of solitary pulmonary nodules. Dynamic contrast-enhanced computerised tomography may be a more cost-effective approach.
Objectives
To determine the diagnostic performances of dynamic contrast-enhanced computerised tomography and positron emission tomography–computerised tomography in the NHS for solitary pulmonary nodules. Systematic reviews and a health economic evaluation contributed to the decision-analytic modelling to assess the likely costs and health outcomes resulting from incorporation of dynamic contrast-enhanced computerised tomography into management strategies.
Design
Multicentre comparative accuracy trial.
Setting
Secondary or tertiary outpatient settings at 16 hospitals in the UK.
Participants
Participants with solitary pulmonary nodules of ≥ 8 mm and of ≤ 30 mm in size with no malignancy in the previous 2 years were included.
Interventions
Baseline positron emission tomography–computerised tomography and dynamic contrast-enhanced computer tomography with 2 years’ follow-up.
Main outcome measures
Primary outcome measures were sensitivity, specificity and diagnostic accuracy for positron emission tomography–computerised tomography and dynamic contrast-enhanced computerised tomography. Incremental cost-effectiveness ratios compared management strategies that used dynamic contrast-enhanced computerised tomography with management strategies that did not use dynamic contrast-enhanced computerised tomography.
Results
A total of 380 patients were recruited (median age 69 years). Of 312 patients with matched dynamic contrast-enhanced computer tomography and positron emission tomography–computerised tomography examinations, 191 (61%) were cancer patients. The sensitivity, specificity and diagnostic accuracy for positron emission tomography–computerised tomography and dynamic contrast-enhanced computer tomography were 72.8% (95% confidence interval 66.1% to 78.6%), 81.8% (95% confidence interval 74.0% to 87.7%), 76.3% (95% confidence interval 71.3% to 80.7%) and 95.3% (95% confidence interval 91.3% to 97.5%), 29.8% (95% confidence interval 22.3% to 38.4%) and 69.9% (95% confidence interval 64.6% to 74.7%), respectively. Exploratory modelling showed that maximum standardised uptake values had the best diagnostic accuracy, with an area under the curve of 0.87, which increased to 0.90 if combined with dynamic contrast-enhanced computerised tomography peak enhancement. The economic analysis showed that, over 24 months, dynamic contrast-enhanced computerised tomography was less costly (£3305, 95% confidence interval £2952 to £3746) than positron emission tomography–computerised tomography (£4013, 95% confidence interval £3673 to £4498) or a strategy combining the two tests (£4058, 95% confidence interval £3702 to £4547). Positron emission tomography–computerised tomography led to more patients with malignant nodules being correctly managed, 0.44 on average (95% confidence interval 0.39 to 0.49), compared with 0.40 (95% confidence interval 0.35 to 0.45); using both tests further increased this (0.47, 95% confidence interval 0.42 to 0.51).
Limitations
The high prevalence of malignancy in nodules observed in this trial, compared with that observed in nodules identified within screening programmes, limits the generalisation of the current results to nodules identified by screening.
Conclusions
Findings from this research indicate that positron emission tomography–computerised tomography is more accurate than dynamic contrast-enhanced computerised tomography for the characterisation of solitary pulmonary nodules. A combination of maximum standardised uptake value and peak enhancement had the highest accuracy with a small increase in costs. Findings from this research also indicate that a combined positron emission tomography–dynamic contrast-enhanced computerised tomography approach with a slightly higher willingness to pay to avoid missing small cancers or to avoid a ‘watch and wait’ policy may be an approach to consider.
Future work
Integration of the dynamic contrast-enhanced component into the positron emission tomography–computerised tomography examination and the feasibility of dynamic contrast-enhanced computerised tomography at lung screening for the characterisation of solitary pulmonary nodules should be explored, together with a lower radiation dose protocol.
Study registration
This study is registered as PROSPERO CRD42018112215 and CRD42019124299, and the trial is registered as ISRCTN30784948 and ClinicalTrials.gov NCT02013063
The Sudbury Neutrino Observatory
The Sudbury Neutrino Observatory is a second generation water Cherenkov
detector designed to determine whether the currently observed solar neutrino
deficit is a result of neutrino oscillations. The detector is unique in its use
of D2O as a detection medium, permitting it to make a solar model-independent
test of the neutrino oscillation hypothesis by comparison of the charged- and
neutral-current interaction rates. In this paper the physical properties,
construction, and preliminary operation of the Sudbury Neutrino Observatory are
described. Data and predicted operating parameters are provided whenever
possible.Comment: 58 pages, 12 figures, submitted to Nucl. Inst. Meth. Uses elsart and
epsf style files. For additional information about SNO see
http://www.sno.phy.queensu.ca . This version has some new reference
Comparative Accuracy and Cost-Effectiveness of Dynamic Contrast Enhanced Computed Tomography and Positron Emission Tomography in the Characterisation of Solitary Pulmonary Nodules
Abstract
Introduction:
Dynamic contrast-enhanced computed tomography (DCE-CT) and Positron Emission Tomography/Computed Tomography (PET/CT) have a high reported accuracy for the diagnosis of malignancy in solitary pulmonary nodules. The aim of this study was to compare the accuracy and cost-effectiveness of these.
Methods:
In this prospective multicentre trial, 380 participants with a solitary pulmonary nodule (8-30mm) and no recent history of malignancy underwent DCE-CT and PET/CT. All patients underwent either biopsy with histological diagnosis or completed CT follow-up. Primary outcome measures were sensitivity, specificity, and overall diagnostic accuracy for PET/CT and DCE-CT. Costs and cost-effectiveness were estimated from a healthcare provider perspective using a decision-model.
Results:
312 participants (47% female, 68.1±9.0 years) completed the study, with 61% rate of malignancy at 2 years. The sensitivity, specificity, positive predictive value and negative predictive values for DCE-CT were 95.3% [95% CI 91.3;97.5], 29.8% [95% CI 22.3;38.4], 68.2% [95% CI 62.4%;73.5%] and 80.0% [95% CI 66.2;89.1] respectively, and for PET/CT were 79.1% [95% CI 72.7;84.2], 81.8% [95% CI 74.0;87.7], 87.3%[95% CI 81.5;91.5) and 71·2%
[95% CI 63.2;78.1]. The area under the receiver operator characteristic curve (AUROC) for DCE-CT and PET/CT was 0.62 [95%CI 0.58;0.67] and 0.80 [95%CI 0.76;0.85] respectively (p<0.001). Combined results significantly increased diagnostic accuracy over PET/CT alone (AUROC=0.90 [95%CI 0.86;0.93], p<0.001). DCE-CT was preferred when the willingness to pay per incremental cost per correctly treated malignancy was below £9000. Above £15500 a combined approach was preferred.
Conclusions:
PET/CT has a superior diagnostic accuracy to DCE-CT for the diagnosis of solitary pulmonary nodules. Combining both techniques improves the diagnostic accuracy over either test alone and could be cost-effective. (Clinical trials.gov - NCT02013063)
Search for eccentric black hole coalescences during the third observing run of LIGO and Virgo
Despite the growing number of binary black hole coalescences confidently observed through gravitational waves so far, the astrophysical origin of these binaries remains uncertain. Orbital eccentricity is one of the clearest tracers of binary formation channels. Identifying binary eccentricity, however, remains challenging due to the limited availability of gravitational waveforms that include the effects of eccentricity. Here, we present observational results for a waveform-independent search sensitive to eccentric black hole coalescences, covering the third observing run (O3) of the LIGO and Virgo detectors. We identified no new high-significance candidates beyond those that have already been identified with searches focusing on quasi-circular binaries. We determine the sensitivity of our search to high-mass (total source-frame mass M > 70 M⊙) binaries covering eccentricities up to 0.3 at 15 Hz emitted gravitational-wave frequency, and use this to compare model predictions to search results. Assuming all detections are indeed quasi-circular, for our fiducial population model, we place a conservative upper limit for the merger rate density of high-mass binaries with eccentricities 0 < e ≤ 0.3 at 16.9 Gpc−3 yr−1 at the 90% confidence level
Electrical characterisation of metal-thin oxide-silicon tunnel diodes prepared by rapid thermal annealing
Physica Status Solidi (A) Applied Research1631129-140PSSA
X-ray photoelectron spectroscopy study of rapid thermal annealed silicon-silicon oxide systems
Journal of Applied Physics81117386-7391JAPI
Preliminary experience of Tc-99m-Aprotinin scintigraphy in amyloidosis
Background and aim: Radio-labelled Aprotinin has been shown to bind with amyloid fibrils in vitro as well as in vivo. The aim was to test the usefulness of 99mTc-Aprotinin imaging in systemic amyloidosis.
Methods: Thirty-five cases who had 99mTc-Aprotinin scans for the assessment of systemic amyloidosis were reviewed retrospectively. Eighteen had biopsy-proven amyloidosis and 17 were controls (amyloidosis was excluded by negative biopsies and non-invasive tests). Five of 18 patients with amyloidosis had final diagnosis of cardiac amyloid.
Results: Physiological uptake of 99mTc-Aprotinin was noted in the urinary tract (kidneys and bladder) and in the liver of all patients and controls; and non-specific uptake of 99mTc-Aprotinin was visualised in the spleen and oro-facial structures in the majority of both groups. Myocardial 99mTc-Aprotinin uptake was noted in all five patients with final diagnosis of cardiac amyloidosis and in none of the 30 subjects who did not have cardiac amyloid. The median heart to background uptake ratio was 2.0 in cardiac amyloid patients and 1.1 in subjects without cardiac amyloid (P = 0.0004). Single Photon Emission Tomography (SPECT) studies of the thorax confirmed that the site of uptake lay within the myocardium. In the amyloidosis group, site-specific 99mTc-Aprotinin uptake was also identified in the subcutaneous tissue of the legs and in a breast nodule shown to be positive for amyloidosis on biopsy.
Conclusions: 99mTc-Aprotinin imaging may be a useful non-invasive method for the assessment of the presence and extent of extra-abdominal amyloid, particularly cardiac amyloidosis. It has little role in diagnosis of amyloidosis involving the oro-facial and abdominal structures