282 research outputs found

    Time interval distributions of atoms in atomic beams

    Full text link
    We report on the experimental investigation of two-particle correlations between neutral atoms in a Hanbury Brown and Twiss experiment. Both an atom laser beam and a pseudo-thermal atomic beam are extracted from a Bose-Einstein condensate and the atom flux is measured with a single atom counter. We determine the conditional and the unconditional detection probabilities for the atoms in the beam and find good agreement with the theoretical predictions.Comment: 4 pages, 3 figure

    Multiplicative renormalizability and quark propagator

    Get PDF
    The renormalized Dyson-Schwinger equation for the quark propagator is studied, in Landau gauge, in a novel truncation which preserves multiplicative renormalizability. The renormalization constants are formally eliminated from the integral equations, and the running coupling explicitly enters the kernels of the new equations. To construct a truncation which preserves multiplicative renormalizability, and reproduces the correct leading order perturbative behavior, non-trivial cancellations involving the full quark-gluon vertex are assumed in the quark self-energy loop. A model for the running coupling is introduced, with infrared fixed point in agreement with previous Dyson-Schwinger studies of the gauge sector, and with correct logarithmic tail. Dynamical chiral symmetry breaking is investigated, and the generated quark mass is of the order of the extension of the infrared plateau of the coupling, and about three times larger than in the Abelian approximation, which violates multiplicative renormalizability. The generated scale is of the right size for hadronic phenomenology, without requiring an infrared enhancement of the running coupling.Comment: 17 pages; minor corrections, comparison to lattice results added; accepted for publication in Phys. Rev.

    Factors infuencing variation in investigations after a negative CT brain scan in suspected subarachnoid haemorrhage: A qualitative study

    Get PDF
    Introduction Variation in the approach to the patient with a possible subarachnoid haemorrhage (SAH) has been previously documented. The purpose of this study was to identify factors that influence emergency physicians’ decisions about diagnostic testing after a normal CT brain scan for ED patients with a headache suspicious of a SAH. Methods We conducted an interview-based qualitative study informed by social constructionist theory. Fifteen emergency physicians from six EDs across Queensland, Australia, underwent individual face-to-face or telephone interviews. Content analysis was performed whereby transcripts were examined and coded independently by two co-investigators, who then jointly agreed on the influencing factors. Results Six categories of influencing factors were identified. Patient interaction was at the forefront of the identified factors. This shared decision-making process incorporated ‘what the patient wants’ but may be biased by how the clinician communicates the benefits and harms of the diagnostic options to the patient. Patient risk profile, practice evidence and guidelines were also important. Other influencing factors included experiential factors of the clinician, consultation with colleagues and external influences where practice location and work processes impose constraints on test ordering external to the preferences of the clinician or patient. The six categories were organised within a conceptual framework comprising four components: the context, the evidence, the experience and the decision. Conclusions When clinicians are faced with a diagnostic challenge, such as the workup of a patient with suspected SAH, there are a number of influencing factors that can result in a variation in approach. These need to be considered in approaches to improve the appropriateness and consistency of medical care.No Full Tex

    Multiplicative renormalizability of gluon and ghost propagators in QCD

    Get PDF
    We reformulate the coupled set of continuum equations for the renormalized gluon and ghost propagators in QCD, such that the multiplicative renormalizability of the solutions is manifest, independently of the specific form of full vertices and renormalization constants. In the Landau gauge, the equations are free of renormalization constants, and the renormalization point dependence enters only through the renormalized coupling and the renormalized propagator functions. The structure of the equations enables us to devise novel truncations with solutions that are multiplicatively renormalizable and agree with the leading order perturbative results. We show that, for infrared power law behaved propagators, the leading infrared behavior of the gluon equation is not solely determined by the ghost loop, as concluded in previous studies, but that the gluon loop, the three-gluon loop, the four-gluon loop, and even massless quarks also contribute to the infrared analysis. In our new Landau gauge truncation, the combination of gluon and ghost loop contributions seems to reject infrared power law solutions, but massless quark loops illustrate how additional contributions to the gluon vacuum polarization could reinstate these solutions. Moreover, a schematic study of the three-gluon and four-gluon loops shows that they too need to be considered in more detail before a definite conclusion about the existence of infrared power behaved gluon and ghost propagators can be reached.Comment: 13 pages, 1 figure, submitted to Phys. Rev.

    Solidification behavior of intensively sheared hypoeutectic Al-Si alloy liquid

    Get PDF
    The official published version of this article can be found at the link below.The effect of the processing temperature on the microstructural and mechanical properties of Al-Si (hypoeutectic) alloy solidified from intensively sheared liquid metal has been investigated systematically. Intensive shearing gives a significant refinement in grain size and intermetallic particle size. It also is observed that the morphology of intermetallics, defect bands, and microscopic defects in high-pressure die cast components are affected by intensive shearing the liquid metal. We attempt to discuss the possible mechanism for these effects.Funded by the EPSRC

    Spatial Degrees of Freedom in Everett Quantum Mechanics

    Full text link
    Stapp claims that, when spatial degrees of freedom are taken into account, Everett quantum mechanics is ambiguous due to a "core basis problem." To examine an aspect of this claim I generalize the ideal measurement model to include translational degrees of freedom for both the measured system and the measuring apparatus. Analysis of this generalized model using the Everett interpretation in the Heisenberg picture shows that it makes unambiguous predictions for the possible results of measurements and their respective probabilities. The presence of translational degrees of freedom for the measuring apparatus affects the probabilities of measurement outcomes in the same way that a mixed state for the measured system would. Examination of a measurement scenario involving several observers illustrates the consistency of the model with perceived spatial localization of the measuring apparatus.Comment: 34 pp., no figs. Introduction, discussion revised. Material tangential to main point remove

    Fluctuations and Dissipation of Coherent Magnetization

    Full text link
    A quantum mechanical model is used to derive a generalized Landau-Lifshitz equation for a magnetic moment, including fluctuations and dissipation. The model reproduces the Gilbert-Brown form of the equation in the classical limit. The magnetic moment is linearly coupled to a reservoir of bosonic degrees of freedom. Use of generalized coherent states makes the semiclassical limit more transparent within a path-integral formulation. A general fluctuation-dissipation theorem is derived. The magnitude of the magnetic moment also fluctuates beyond the Gaussian approximation. We discuss how the approximate stochastic description of the thermal field follows from our result. As an example, we go beyond the linear-response method and show how the thermal fluctuations become anisotropy-dependent even in the uniaxial case.Comment: 22 page

    Narrow genetic base in forest restoration with holm oak (Quercus ilex L.) in Sicily

    Full text link
    In order to empirically assess the effect of actual seed sampling strategy on genetic diversity of holm oak (Quercus ilex) forestations in Sicily, we have analysed the genetic composition of two seedling lots (nursery stock and plantation) and their known natural seed origin stand by means of six nuclear microsatellite loci. Significant reduction in genetic diversity and significant difference in genetic composition of the seedling lots compared to the seed origin stand were detected. The female and the total effective number of parents were quantified by means of maternity assignment of seedlings and temporal changes in allele frequencies. Extremely low effective maternity numbers were estimated (Nfe ≈\approx 2-4) and estimates accounting for both seed and pollen donors gave also low values (Ne ≈\approx 35-50). These values can be explained by an inappropriate forestry seed harvest strategy limited to a small number of spatially close trees

    A historical perspective on the discovery of statins

    Get PDF
    Cholesterol is essential for the functioning of all human organs, but it is nevertheless the cause of coronary heart disease. Over the course of nearly a century of investigation, scientists have developed several lines of evidence that establish the causal connection between blood cholesterol, atherosclerosis, and coronary heart disease. Building on that knowledge, scientists and the pharmaceutical industry have successfully developed a remarkably effective class of drugs—the statins—that lower cholesterol levels in blood and reduce the frequency of heart attacks
    • 

    corecore