15 research outputs found

    Telomere-based proliferative lifespan barriers in Werner-syndrome fibroblasts involve both p53-dependent and p53-independent mechanisms

    Get PDF
    Werner-syndrome fibroblasts have a reduced in vitro life span before entering replicative senescence. Although this has been thought to be causal in the accelerated ageing of this disease, controversy remains as to whether Werner syndrome is showing the acceleration of a normal cellular ageing mechanism or the occurrence of a novel Werner-syndrome-specific process. Here, we analyse the signalling pathways responsible for senescence in Werner-syndrome fibroblasts. Cultured Werner-syndrome (AG05229) fibroblasts senesced after approximately 20 population doublings with most of the cells having a 2N content of DNA. This was associated with hypophosphorylated pRb and high levels of p16(Ink4a) and p21(Waf1). Senescent AG05229 cells re-entered the cell cycle following microinjection of a p53-neutralizing antibody. Similarly, production of the human papilloma virus 16 E6 oncoprotein in presenescent AG05229 cells resulted in senescence being bypassed and extended cellular life span. Werner-syndrome fibroblasts expressing E6 did not proliferate indefinitely but reached a second proliferative lifespan barrier, termed M(int), that could be bypassed by forced production of telomerase in post-M1 E6-producing cells. The conclusions from these studies are that: (1) replicative senescence in Werner-syndrome fibroblasts is a telomere-induced p53-dependent event; and (2) the intermediate lifespan barrier M(int) is also a telomere-induced event, although it appears to be independent of p53. Werner-syndrome fibroblasts resemble normal human fibroblasts for both these proliferative lifespan barriers, with the strong similarity between the signalling pathway linking telomeres to cell-cycle arrest in Werner-syndrome and normal fibroblasts providing further support for the defect in Werner syndrome causing the acceleration of a normal ageing mechanism

    Interaction between p53 and TGF beta 1 in control of epithelial cell proliferation

    No full text
    Although loss of sensitivity to transforming growth factor beta (TGF beta) may be a key step in the escape of epithelial tumours from normal growth control, the intracellular signals determining responsiveness remain controversial, particularly the role of p53. We have investigated this question using thyroid epithelial lines as a model. We analysed (i) human thyroid cancer cell lines having either wild-type (wt) or mutant p53; (ii) rat thyroid lines derived by spontaneous immortalisation following introduction of mutant H-ras, which exhibit high levels of wt p53 but loss of p53-mediated cell-cycle control. Loss of response to TGF beta 1 was found in all human lines bearing mutant p53, and in the majority of the functionally equivalent rat lines, consistent with a role of wt p53 in mediating response. However, introduction of a dominant negative p53 mutant into TGF beta 1 responsive human lines containing wt p53 did not reduce responsiveness, demonstrating that p53 function is not necessary for TGF beta 1 response. On the other hand, expression of a temperature-sensitive (ts) p53 gene in a partially-responsive rat line demonstrated a highly significant modulation of TGF beta response, which fell from 65% inhibition of 3H-thymidine labelling index at 32.5 degrees C (wt p53 conformation) to only 14% at 37.5 degrees C (mutant conformation). The results suggest that p53 and TGF beta generate separate but interacting inhibitory signals, i.e. that p53 modulates but does not mediate TGF beta response. This conclusion explains previous conflicting data and is consistent with current models of cell cycle control by multiple inhibitors of cyclin-dependent kinases

    Evasion of p53-mediated growth control occurs by three alternative mechanisms in transformed thyroid epithelial cells

    No full text
    Using the thyroid as a model of multistep epithelial tumorigenesis, we have used representative cell lines to correlate the degree of malignant transformation with the functional status of p53 and the integrity of cell-cycle check-points. Three distinct phenotypes were observed: Type I lines, derived from poorly-differentiated human thyroid cancers, expressed high levels of mutant p53 protein; Type II, also poorly-differentiated but derived from rat, showed over-expression of wild-type (wt) p53 with marked cell-cell heterogeneity: Type III, from well-differentiated human cancers, contained uniformly low levels of wt p53. All cell lines containing wt p53 retained a near-normal induction of p53 by DNA damage. However, the ability to undergo growth arrest differed strikingly. Whereas Type I and II lines had lost both G2/M and G1/S check points, Type III cells retained both. In Type III cells, as in diploid human fibroblasts, mutant p53 expression specifically abrogated G1/S check-point function with no other change in phenotype. These data demonstrate 3 mechanisms for evasion of p53 growth control: (i) direct mutation (ii) indirect inactivation, or (iii) 'avoidance' of activation, most probably due to failure to reach a critical threshold of DNA damage
    corecore