412 research outputs found
Assessment of insert sizes and adapter content in fastq data from NexteraXT libraries
The Illumina NexteraXT transposon protocol is a cost effective way to generate paired end libraries. However the resulting insert size is highly sensitive to the concentration of DNA used, and the variation of insert sizes is often large. One consequence of this is some fragments may have an insert shorter than the length of a single read, particularly where the library is designed to produce overlapping paired end reads in order to produce longer continuous sequences. Such small insert sizes mean fewer longer reads, and also result in the presence of adapter at the end of the read. Here is presented a protocol to use publicly available tools to identify read pairs with small insert sizes and so likely to contain adapter, to check the sequence of the adapter, and remove adapter sequence from the reads. This protocol does not require a reference genome or prior knowledge of the sequence to be trimmed. Whilst the presence of fragments with small insert sizes may be a particular problem for NexteraXT libraries, the principle can be applied to any Illumina dataset in which the presence of such small inserts is suspected
Model- and calibration-independent test of cosmic acceleration
We present a calibration-independent test of the accelerated expansion of the
universe using supernova type Ia data. The test is also model-independent in
the sense that no assumptions about the content of the universe or about the
parameterization of the deceleration parameter are made and that it does not
assume any dynamical equations of motion. Yet, the test assumes the universe
and the distribution of supernovae to be statistically homogeneous and
isotropic. A significant reduction of systematic effects, as compared to our
previous, calibration-dependent test, is achieved. Accelerated expansion is
detected at significant level (4.3 sigma in the 2007 Gold sample, 7.2 sigma in
the 2008 Union sample) if the universe is spatially flat. This result depends,
however, crucially on supernovae with a redshift smaller than 0.1, for which
the assumption of statistical isotropy and homogeneity is less well
established.Comment: 13 pages, 2 figures, major change
Density mismatch in thin diblock copolymer films
Thin films of diblock copolymer subject to gravitational field are simulated
by means of a cell dynamical system model. The difference in density of the two
sides of the molecule and the presence of the field causes the formation of
lamellar patterns with orientation parallel to the confining walls even when
they are neutral. The concentration profile of those films is analyzed in the
weak segregation regime and a functional form for the profile is proposed.Comment: 9 pages and 8 figures. Needs EPSF macros. Submitted to PR
Cosmological Effects of Radion Oscillations
We show that the redshift of pressureless matter density due to the expansion
of the universe generically induces small oscillations in the stabilized radius
of extra dimensions (the radion field). The frequency of these oscillations is
proportional to the mass of the radion and can have interesting cosmological
consequences. For very low radion masses () these low frequency oscillations lead to oscillations in
the expansion rate of the universe. The occurrence of acceleration periods
could naturally lead to a resolution of the coincidence problem, without need
of dark energy. Even though this scenario for low radion mass is consistent
with several observational tests it has difficulty to meet fifth force
constraints. If viewed as an effective Brans-Dicke theory it predicts
( is the number of extra dimensions), while
experiments on scales larger than imply . By deriving the
generalized Newtonian potential corresponding to a massive toroidally compact
radion we demonstrate that Newtonian gravity is modified only on scales smaller
than . Thus, these constraints do not apply for
(high frequency oscillations) corresponding to scales less than the current
experiments (). Even though these high frequency oscillations can not
resolve the coincidence problem they provide a natural mechanism for dark
matter generation. This type of dark matter has many similarities with the
axion.Comment: Accepted in Phys. Rev. D. Clarifying comments added in the text and
some additional references include
Equation of State of Oscillating Brans-Dicke Scalar and Extra Dimensions
We consider a Brans-Dicke scalar field stabilized by a general power law
potential with power index at a finite equilibrium value. Redshifting
matter induces oscillations of the scalar field around its equilibrium due to
the scalar field coupling to the trace of the energy momentum tensor. If the
stabilizing potential is sufficiently steep these high frequency oscillations
are consistent with observational and experimental constraints for arbitrary
value of the Brans-Dicke parameter . We study analytically and
numerically the equation of state of these high frequency oscillations in terms
of the parameters and and find the corresponding evolution of the
universe scale factor. We find that the equation of state parameter can be
negative and less than -1 but it is not related to the evolution of the scale
factor in the usual way. Nevertheless, accelerating expansion is found for a
certain parameter range. Our analysis applies also to oscillations of the size
of extra dimensions (the radion field) around an equilibrium value. This
duality between self-coupled Brans-Dicke and radion dynamics is applicable for
where D is the number of extra dimensions.Comment: 10 two-column pages, RevTex4, 8 figures. Added clarifying
discussions, new references. Accepted in Phys. Rev. D (to appear
Gravitomagnetic Effects in the Propagation of Electromagnetic Waves in Variable Gravitational Fields of Arbitrary-Moving and Spinning Bodies
Propagation of light in the gravitational field of self-gravitating spinning
bodies moving with arbitrary velocities is discussed. The gravitational field
is assumed to be "weak" everywhere. Equations of motion of a light ray are
solved in the first post-Minkowskian approximation that is linear with respect
to the universal gravitational constant . We do not restrict ourselves with
the approximation of gravitational lens so that the solution of light geodesics
is applicable for arbitrary locations of source of light and observer. This
formalism is applied for studying corrections to the Shapiro time delay in
binary pulsars caused by the rotation of pulsar and its companion. We also
derive the correction to the light deflection angle caused by rotation of
gravitating bodies in the solar system (Sun, planets) or a gravitational lens.
The gravitational shift of frequency due to the combined translational and
rotational motions of light-ray-deflecting bodies is analyzed as well. We give
a general derivation of the formula describing the relativistic rotation of the
plane of polarization of electromagnetic waves (Skrotskii effect). This formula
is valid for arbitrary translational and rotational motion of gravitating
bodies and greatly extends the results of previous researchers. Finally, we
discuss the Skrotskii effect for gravitational waves emitted by localized
sources such as a binary system. The theoretical results of this paper can be
applied for studying various relativistic effects in microarcsecond space
astrometry and developing corresponding algorithms for data processing in space
astrometric missions such as FAME, SIM, and GAIA.Comment: 36 pages, 1 figure, submitted to Phys. Rev.
Can induced gravity isotropize Bianchi I, V, or IX Universes?
We analyze if Bianchi I, V, and IX models in the Induced Gravity (IG) theory
can evolve to a Friedmann--Roberson--Walker (FRW) expansion due to the
non--minimal coupling of gravity and the scalar field. The analytical results
that we found for the Brans-Dicke (BD) theory are now applied to the IG theory
which has ( being the square ratio of the Higgs to
Planck mass) in a cosmological era in which the IG--potential is not
significant. We find that the isotropization mechanism crucially depends on the
value of . Its smallness also permits inflationary solutions. For the
Bianch V model inflation due to the Higgs potential takes place afterwads, and
subsequently the spontaneous symmetry breaking (SSB) ends with an effective FRW
evolution. The ordinary tests of successful cosmology are well satisfied.Comment: 24 pages, 5 figures, to be published in Phys. Rev. D1
Scalar Field Dark Matter
This work is a review of the last results of research on the Scalar Field
Dark Matter model of the Universe at cosmological and at galactic level. We
present the complete solution to the scalar field cosmological scenario in
which the dark matter is modeled by a scalar field with the scalar
potential and the
dark energy is modeled by a scalar field , endowed with the scalar
potential , which together compose the 95% of the total
matter energy in the Universe. The model presents successfully deals with the
up to date cosmological observations, and is a good candidate to treat the dark
matter problem at the galactic level.Comment: 11 pagez, 5 figures, REVTeX. To appear in proceedings of the
``Mexican Meeting on Exact Solutions and Scalar Fields in Gravity '', in
honour of Heinz Dehnen's 65th Birthday and Dietrich Kramer's 60th Birthday.
Mexico D.F., Mexico, in press. More info at
http://www.fis.cinvestav.mx/~siddh/PHI
Quintessence and Gravitational Waves
We investigate some aspects of quintessence models with a non-minimally
coupled scalar field and in particular we show that it can behave as a
component of matter with . We study the
properties of gravitational waves in this class of models and discuss their
energy spectrum and the cosmic microwave background anisotropies they induce.
We also show that gravitational waves are damped by the anisotropic stress of
the radiation and that their energy spectrum may help to distinguish between
inverse power law potential and supergravity motivated potential. We finish by
a discussion on the constraints arising from their density parameter
\Omega_\GW.Comment: 21 pages, 18 figures, fianl version, accepted for publication in PR
Magnetogenesis and the dynamics of internal dimensions
The dynamical evolution of internal space-like dimensions breaks the
invariance of the Maxwell's equations under Weyl rescaling of the (conformally
flat) four-dimensional metric. Depending upon the number and upon the dynamics
of internal dimensions large scale magnetic fields can be created. The
requirements coming from magnetogenesis together with the other cosmological
constraints are examined under the assumption that the internal dimensions
either grow or shrink (in conformal time) prior to a radiation dominated epoch.
If the internal dimensions are growing the magnitude of the generated magnetic
fields can seed the galactic dynamo mechanism.Comment: 27 in RevTex style, four figure
- âŠ