35 research outputs found
Matrix elements relevant for Delta I=1/2 rule and epsilon-prime from Lattice QCD with staggered fermions
We perform a study of matrix elements relevant for the Delta I=1/2 rule and
the direct CP-violation parameter epsilon-prime from first principles by
computer simulation in Lattice QCD. We use staggered (Kogut-Susskind) fermions,
and employ the chiral perturbation theory method for studying K to 2 Pi decays.
Having obtained a reasonable statistical accuracy, we observe an enhancement of
the Delta I=1/2 amplitude, consistent with experiment within our large
systematic errors. Finite volume and quenching effects have been studied and
were found small compared to noise. The estimates of epsilon-prime are hindered
by large uncertainties associated with operator matching. In this paper we
explain the simulation method, present the results and address the systematic
uncertainties.Comment: 40 pages, 17 figures, LATEX with epsf, to be submitted to Phys. Rev.
D. Minor errors are corrected, some wording and notation change
Lattice Calculation of Heavy-Light Decay Constants with Two Flavors of Dynamical Quarks
We present results for , , , and their ratios in
the presence of two flavors of light sea quarks (). We use Wilson light
valence quarks and Wilson and static heavy valence quarks; the sea quarks are
simulated with staggered fermions. Additional quenched simulations with
nonperturbatively improved clover fermions allow us to improve our control of
the continuum extrapolation. For our central values the masses of the sea
quarks are not extrapolated to the physical , masses; that is, the
central values are "partially quenched." A calculation using "fat-link clover"
valence fermions is also discussed but is not included in our final results. We
find, for example,
MeV, , MeV, and , where in each case the first error is
statistical and the remaining three are systematic: the error within the
partially quenched approximation, the error due to the missing strange
sea quark and to partial quenching, and an estimate of the effects of chiral
logarithms at small quark mass. The last error, though quite significant in
decay constant ratios, appears to be smaller than has been recently suggested
by Kronfeld and Ryan, and Yamada. We emphasize, however, that as in other
lattice computations to date, the lattice quark masses are not very light
and chiral log effects may not be fully under control.Comment: Revised version includes an attempt to estimate the effects of chiral
logarithms at small quark mass; central values are unchanged but one more
systematic error has been added. Sections III E and V D are completely new;
some changes for clarity have also been made elsewhere. 82 pages; 32 figure
Quenched Lattice QCD with Domain Wall Fermions and the Chiral Limit
Quenched QCD simulations on three volumes, , and
and three couplings, , 5.85 and 6.0 using domain
wall fermions provide a consistent picture of quenched QCD. We demonstrate that
the small induced effects of chiral symmetry breaking inherent in this
formulation can be described by a residual mass (\mres) whose size decreases
as the separation between the domain walls () is increased. However, at
stronger couplings much larger values of are required to achieve a given
physical value of \mres. For and , we find
\mres/m_s=0.033(3), while for , and ,
\mres/m_s=0.074(5), where is the strange quark mass. These values are
significantly smaller than those obtained from a more naive determination in
our earlier studies. Important effects of topological near zero modes which
should afflict an accurate quenched calculation are easily visible in both the
chiral condensate and the pion propagator. These effects can be controlled by
working at an appropriately large volume. A non-linear behavior of in
the limit of small quark mass suggests the presence of additional infrared
subtlety in the quenched approximation. Good scaling is seen both in masses and
in over our entire range, with inverse lattice spacing varying between
1 and 2 GeV.Comment: 91 pages, 34 figure
Cardiothoracic ratio and vertebral heart size (VHS) to standardize the heart size of the tufted capuchin (Cebus apella Linnaeus, 1758) in computerized radiographic images
Abstract: The VHS and CTR were assessed using computerized thoracic radiographs of ten clinically healthy tufted capuchin monkeys (five males and five females) from the Wild Animal Screening Center in São Luís (Centro de Triagem de Animais Silvestres de São Luís-MA-CETAS). Radiographs were taken in laterolateral and dorsoventral projections to calculate the cardiothoracic ratio (VHS) and vertebral heart size (CTR). The VHS showed mean values of 9.34±0.32v (males) and 9.16±0.34v (females) and there was no statistical difference between males and females (p>0.05). The CTR showed mean values of 0.55±0.04 (males) and 0.52±0.03 (females) and there was no statistical difference between the sexes (p>0.05). There was positive correlation between VHS and CTR (r=0.78). The thoracic and heart diameters showed mean values of 5.70±0.48cm and 2.16±0.40cm in the males, respectively. In the females they measured 5.32±0.39cm and 2.94±0.32cm. There was no statistical difference between the sexes. Our results show that the high correlation found between VHS and CTR permitted the verification with similar clinical precision between the two methods to estimate alterations in the heart silhouette by radiographic examination of tufted capuchin, making it an easy technique to apply that can be considered in the investigation of heart problems for this wild species