8 research outputs found

    Degenerating families of dendrograms

    Full text link
    Dendrograms used in data analysis are ultrametric spaces, hence objects of nonarchimedean geometry. It is known that there exist pp-adic representation of dendrograms. Completed by a point at infinity, they can be viewed as subtrees of the Bruhat-Tits tree associated to the pp-adic projective line. The implications are that certain moduli spaces known in algebraic geometry are pp-adic parameter spaces of (families of) dendrograms, and stochastic classification can also be handled within this framework. At the end, we calculate the topology of the hidden part of a dendrogram.Comment: 13 pages, 8 figure

    The Non-Archimedean Theory of Discrete Systems

    Full text link
    In the paper, we study behavior of discrete dynamical systems (automata) w.r.t. transitivity; that is, speaking loosely, we consider how diverse may be behavior of the system w.r.t. variety of word transformations performed by the system: We call a system completely transitive if, given arbitrary pair a,ba,b of finite words that have equal lengths, the system A\mathfrak A, while evolution during (discrete) time, at a certain moment transforms aa into bb. To every system A\mathfrak A, we put into a correspondence a family FA\mathcal F_{\mathfrak A} of continuous maps of a suitable non-Archimedean metric space and show that the system is completely transitive if and only if the family FA\mathcal F_{\mathfrak A} is ergodic w.r.t. the Haar measure; then we find easy-to-verify conditions the system must satisfy to be completely transitive. The theory can be applied to analyze behavior of straight-line computer programs (in particular, pseudo-random number generators that are used in cryptography and simulations) since basic CPU instructions (both numerical and logical) can be considered as continuous maps of a (non-Archimedean) metric space Z2\mathbb Z_2 of 2-adic integers.Comment: The extended version of the talk given at MACIS-201

    Uniqueness in Discrete Tomography of Delone Sets with Long-Range Order

    Full text link
    We address the problem of determining finite subsets of Delone sets ΛRd\varLambda\subset\R^d with long-range order by XX-rays in prescribed Λ\varLambda-directions, i.e., directions parallel to non-zero interpoint vectors of Λ\varLambda. Here, an XX-ray in direction uu of a finite set gives the number of points in the set on each line parallel to uu. For our main result, we introduce the notion of algebraic Delone sets ΛR2\varLambda\subset\R^2 and derive a sufficient condition for the determination of the convex subsets of these sets by XX-rays in four prescribed Λ\varLambda-directions.Comment: 15 pages, 2 figures; condensed and revised versio

    Orthogonalities and functional equations

    Get PDF
    In this survey we show how various notions of orthogonality appear in the theory of functional equations. After introducing some orthogonality relations, we give examples of functional equations postulated for orthogonal vectors only. We show their solutions as well as some applications. Then we discuss the problem of stability of some of them considering various aspects of the problem. In the sequel, we mention the orthogonality equation and the problem of preserving orthogonality. Last, but not least, in addition to presenting results, we state some open problems concerning these topics. Taking into account the big amount of results concerning functional equations postulated for orthogonal vectors which have appeared in the literature during the last decades, we restrict ourselves to the most classical equations

    Orthogonalities and functional equations

    Full text link
    corecore