14 research outputs found
Systematics of Leading Particle Production
Using a QCD inspired model developed by our group for particle production,
the Interacting Gluon Model (IGM), we have made a systematic analysis of all
available data on leading particle spectra. These data include diffractive
collisions and photoproduction at HERA. With a small number of parameters
(essentially only the non-perturbative gluon-gluon cross section and the
fraction of diffractive events) good agreement with data is found. We show that
the difference between pion and proton leading spectra is due to their
different gluon distributions. We predict a universality in the diffractive
leading particle spectra in the large momentum region, which turns out to be
independent of the incident energy and of the projectile type.Comment: 13 pages, Latex, 4 ps figures. To appear in Phys. Rev.
Progress in the determination of the cross section
Improving previous calculations, we compute the cross section using QCD sum rules. Our sum rules for the , , and hadronic
matrix elements are constructed by using vaccum-pion correlation functions, and
we work up to twist-4 in the soft-pion limit. Our results suggest that, using
meson exchange models is perfectly acceptable, provided that they include form
factors and that they respect chiral symmetry. After doing a thermal average we
get mb at T=150\MeV.Comment: 22 pages, RevTeX4 including 7 figures in ps file
How Hard Are the Form Factors in Hadronic Vertices with Heavy Mesons?
The and form factors are evaluated in a full
QCD sum rule calculation. We study the double Borel sum rule for the three
point function of one meson one nucleon and one current up to order
six in the operator product expansion. The double Borel transform is performed
with respect to the nucleon and momenta, and the form factor is
evaluated as a function of the momentum of the heavy meson. These form
factors are relevant to evaluate the charmonium absorption cross section by
hadrons. Our results are compatible with constant form factors in these
vertices.Comment: 12 pages, RevTeX including 5 figures in ps file
Estimating the inelasticity with the information theory approach
Using the information theory approach, in both its extensive and nonextensive
versions, we estimate the inelasticity parameter of hadronic reactions
together with its distribution and energy dependence from and
data. We find that the inelasticity remains essentially constant in energy
except for a variation around , as was originally expected.Comment: 14 pages, 8 figures. Misprints correcte
Leading Charm Production in the Interacting Gluon Model
We discuss leading charm production in connection with energy deposition in
the central rapidity region. Special attention is given to the correlation
between production in central and fragmentation regions. If the fraction of the
reaction energy released in the central region increases the asymmetry in the
distributions of charmed mesons will become smaller. We illustrate this
quantitatively with simple calculations performed using the Interacting Gluon
Model. Leading beauty production is also considered.Comment: 13 pages in Latex file and 7 uuencoded ps-figure
Dissociation cross sections of ground-state and excited charmonia with light mesons in the quark model
We present numerical results for the dissociation cross sections of
ground-state, orbitally- and radially-excited charmonia in collisions with
light mesons. Our results are derived using the nonrelativistic quark model, so
all parameters are determined by fits to the experimental meson spectrum.
Examples of dissociation into both exclusive and inclusive final states are
considered. The dissociation cross sections of several C=(+) charmonia may be
of considerable importance for the study of heavy ion collisions, since these
states are expected to be produced more copiously than the J/psi. The relative
importance of the productions of ground-state and orbitally-excited charmed
mesons in a pion-charmonium collision is demonstrated through the -dependent charmonium dissociation cross sections.Comment: 9 pages, 8 figure
Fe2O3/aluminum thermite reaction intermediate and final products characterization
Radial combustion experiments on Fe2O3/aluminum thermite thin circular samples were conducted. A stoichiometric (Fe2O3 + 2Al) and four over aluminized mixtures were tested. The combustion products were characterized by X-ray diffraction and Mössbauer spectroscopy and the influence of Fe2O3/aluminum ratio on their composition was assessed. The main products were identified as alumina ([alpha]-Al2O3) and iron (Fe). A significant amount of hercynite (FeAl2O4) was detected, decreasing with the aluminum excess in the reactants. Close to the sample/confinement interface, where reaction quenching occurs, a non-stoichiometric alumina (Al2.667O4) was observed, being its XRD intensity correlated to the hercynite amount. Fe3Al intermetallic phase was found in the products of over aluminized mixtures. A reaction mechanism was proposed comprising: (i) Fe2O3 reduction to Fe3O4 and FeO; (ii) Al oxidation to Al2O3; (iii) interaction of the remaining Al with Fe3O4 and FeO with formation of iron-aluminates (hercynite) and iron; (iv) for the over aluminized mixtures, incorporation of Al into the iron-aluminates takes place with the formation of iron and alumina and, in parallel, Al reacts with iron to produce intermetallics.http://www.sciencedirect.com/science/article/B6TXD-4NB2WNM-D/1/330874328b00bbec08b3f511d245aa0