32 research outputs found

    Reducing potassium deficiency by using sodium fertilisation

    Get PDF
    Potassium (K) is the most abundant cation in the vast majority of plants. It is required in large quantities which, in an agronomic context, typically necessitates application of K in the form of potash or other K fertilisers. Recently, the price of K fertiliser has risen dramatically, a situation that is paralleled by increasing K deficiency of soils around the globe. A potential solution to this problem is to reduce crop K fertiliser dependency by replacing it with sodium (Na) fertiliser which carries a much smaller price tag. In this paper we discuss the physiological roles of K and Na and the implications of Na fertilisation for crop cultivation and soil management. By using greenhouse growth assays we show distinct growth promotion after Na fertilisation in wheat, tomato, oilseed and sorghum. Our results also show that up to 60% of tissue K can be substituted by Na without growth penalty. Based on these data, simple economic models suggest that (part) replacement of K fertiliser with Na fertiliser leads to considerable savings

    The effect of silicon on osmotic and drought stress tolerance in wheat landraces

    Get PDF
    Drought stress reduces annual global wheat yields by 20%. Silicon (Si) fertilisation has been proposed to improve plant drought stress tolerance. However, it is currently unknown if and how Si affects different wheat landraces, especially with respect to their innate Si accumulation properties. In this study, significant and consistent differences in Si accumulation between landraces were identified, allowing for the classification of high Si accumulators and low Si accumulators. Landraces from the two accumulation groups were then used to investigate the effect of Si during osmotic and drought stress. Si was found to improve growth marginally in high Si accumulators during osmotic stress. However, no significant effect of Si on growth during drought stress was found. It was further found that osmotic stress decreased Si accumulation for all landraces whereas drought increased it. Overall, these results suggest that the beneficial effect of Si commonly reported in similar studies is not universal and that the application of Si fertiliser as a solution to agricultural drought stress requires detailed understanding of genotype-specific responses to Si

    Induction of silicon defences in wheat landraces is local not systemic and driven by mobilisation of soluble silicon to damaged leaves

    Get PDF
    In response to herbivory, many grasses, including crops such as wheat, accumulate significant levels of silicon (Si) as an antiherbivore defence. Damage-induced increases in Si can be localised in damaged leaves or more systemic, but the mechanisms leading to these differences in Si distribution remain untested. Ten genetically diverse wheat landraces (Triticum aestivum) were used to assess genotypic variation in Si induction in response to mechanical damage and how this was affected by exogenous Si supply. Total and soluble Si levels were measured in damaged and undamaged leaves, as were Si levels in the phloem, to test how Si was allocated to different parts of the plant after damage. Localised, but not systemic, induction of Si defences occurred, more pronounced when plants had supplemental Si. Damaged plants had significant increases in Si concentration in their damaged leaves, while the Si concentration in undamaged leaves decreased, such that there was no difference in the average Si concentration of damaged and undamaged plants. The increased Si in damaged leaves was due to the redirection of soluble Si, present in the phloem, from undamaged to damaged plant parts, potentially a more cost-effective defence mechanism for plants than increased Si uptake

    cGMP modulates gene transcription and cation transport in Arabidopsis roots

    No full text
    The occurrence of the second messenger 3',5'-cyclic guanyl monophosphate (cGMP) has been shown in a number of plant species, including barley, tobacco and Arabidopsis. Physiological processes where cGMP signalling has been observed, or has been inferred, to play a role include chloroplast development, α-amylase production in aleurone tissue, NO-dependent expression of defence-related genes and salt/osmotic stress. In most cases, it is unknown how cGMP exerts its effects and what the downstream targets are. A transcriptomics approach was therefore used to identify putative targets for cGMP signalling. Root exposure to 10 Όm membrane permeable cGMP induced changes in abundance for many transcripts involved in metabolism, gene transcription, signalling and defence. In particular, monovalent cation transporters such as non-selective ion channels and cation:proton antiporters were found to be affected in cGMP exposed roots. In addition, exposure to cGMP was found to modulate influx and efflux of the monovalent cations Na+ and K+

    Patch‐clamp studies in cell membranes of higher plants

    No full text
    The patch-clamp technique is a relatively new and powerful electrophysiological technique. Its resolving power is such that ion currents can be recorded through only one protein or ion-channel. The application of this technique in higher plant physiology, its principles and advantages are discussed in this paper. Furthermore, some actual results of single-channel recordings, whole cell recordings and ATPase currents are shown and examples are given of ion-channel conductance and selectivity calculations

    Sodium uptake in Arabidopsis roots is regulated by cyclic nucleotides

    No full text
    Sodium uptake from the soil is a major cause of salinity toxicity in plants, yet little is known about the mechanisms that underlie Na+ influx. We have characterized voltage independent channels (VICs) in Arabidopsis roots that are thought to contribute to Na+ entry. VICs showed no selectivity among monovalent cations, and their gating was found to be voltage independent. However, VIC open probability showed sensitivity to cyclic nucleotides. The presence of micromolar concentrations of cAMP or cGMP at the cytoplasmic side of the plasma membrane evoked a rapid decrease in channel open probability. In accord with predictions from electrophysiological data, our results show that short-term unidirectional Na+ influx is also reduced in the presence of cyclic nucleotides. Moreover, addition of membrane permeable cyclic nucleotides during growth assays improved plant salinity tolerance, which corresponded with lower levels of Na+ accumulation in plants. In summary, these data imply that Arabidopsis plants may contain a cyclic nucleotide-based signaling pathway that directly affects Na+ transport via VICs
    corecore