20 research outputs found

    Microalbuminuria is a major determinant of elevated plasma retinol-binding protein 4 in type 2 diabetic patients

    Get PDF
    Plasma retinol-binding protein 4 (RBP4) may be a new adipokine linked to obesity-induced insulin resistance and type 2 diabetes. The impact of diabetic nephropathy on plasma RBP4 levels, however, is not known. We tested the hypothesis that microalbuminuria is associated with elevated plasma concentrations of RBP4 in type 2 diabetic subjects. Retinol, its binding protein and transthyretin (TTR) were measured in the plasma and urine of 62 type 2 diabetic subjects, 26 of whom had microalbuminuria. The results were compared to 35 healthy control subjects. Despite no differences in plasma retinol, concentrations of the RBP4 were significantly elevated in plasma of diabetic patients and significantly higher in those with microalbuminuria. The higher plasma levels of the binding protein in subjects with microalbuminuria were accompanied by both significantly elevated plasma TTR and increased urinary levels of RBP4. There were no correlations of plasma-binding protein levels and parameters of insulin resistance. Our study suggests that plasma RBP4 levels in type 2 diabetic patients are affected by incipient nephropathy. Therefore, further studies evaluating RBP4 as a regulator of systemic insulin resistance and type 2 diabetes will need to take renal function into consideration

    Megalin-mediated reuptake of retinol in the kidneys of mice is essential for vitamin a homeostasis

    No full text
    The reuptake of retinol (ROH) and retinol-binding protein (RBP) in the kidneys is mediated by the endocytic receptor megalin, suggesting an important role for this receptor in vitamin A (VA) metabolism. We examined the extent to which megalin deficiency may affect urinary ROH excretion, levels of ROH and RBP in plasma, as well as storage of VA in liver and kidney. For this purpose, mice with a kidney-specific megalin gene defect (megalinlox/lox; apoECre) and control mice (megalinlox/lox) were fed either a basal diet containing 4500 retinol equivalents (RE)/kg diet or a diet without VA during experimental periods of 42 and 84 d. Urinary ROH excretion was observed only in megalinlox/lox; apoECre mice (P < 0.0001, 2-way ANOVA) and not in the controls. Plasma ROH and RBP differed only by diet (P < 0.05), but not genotype (P = 0.615). A major effect of megalin deficiency, however, was evident in retinyl ester levels in the liver (P < 0.05), which were ∼37% lower than those in megalinlox/lox controls (P < 0.05, Student's t test) during the 84-d period of dietary VA deprivation. Kidney levels of VA were not affected by the receptor gene defect. The findings demonstrate that urinary ROH excretion caused by megalin deficiency requires accelerated mobilization of hepatic VA stores to maintain normal plasma ROH levels, which suggests that megalin plays an essential role in systemic VA homeostasis

    Great apes show highly selective plasma carotenoids and have physiologically high plasma retinyl esters compared to humans

    No full text
    Great apes are the closest living relatives of humans. Physiological similarities between great apes and humans provide clues to identify which biological features in humans are primitive or derived from great apes. Vitamin A (VA) and carotenoid metabolism have been only partially studied in great apes, and comparisons between great apes and humans are not available. We aimed to investigate VA and carotenoid intake and plasma concentrations in great apes living in captivity, and to compare them to healthy humans. Dietary intakes of humans (n = 20) and, among the great apes, chimpanzees (n = 15) and orangutans (n = 5) were calculated. Plasma retinol (ROH), retinol-binding protein (RBP), retinyl esters, and major carotenoids were analyzed. The great ape diet was higher in VA than in humans, due to high intake of provitamin A carotenoids. Plasma ROH concentrations in great apes were similar to those in humans, but retinyl esters were higher in great apes than in humans. Differences in plasma carotenoid concentrations were observed between great apes and humans. Lutein was the main carotenoid in great apes, while beta-carotene was the main carotenoid for humans. RBP concentrations did not differ between great apes and humans. The molar ratio of ROH to RBP was close to 1.0 in both great apes and humans. In conclusion, great apes show homeostatic ROH regulation, with high but physiological retinyl esters circulating in plasma. Furthermore, great apes show great selectivity in their plasmatic carotenoid concentration, which is not explained by dietary intake

    Proximate composition, mineral content and fatty acid profile of two marine fishes from Cameroonian coast: Pseudotolithus typus (Bleeker, 1863) and Pseudotolithus elongatus (Bowdich, 1825)

    Get PDF
    Background: Knowledge of chemical composition of fish from Cameroon is poor. The genera Pseudotolithus are nutritionally and economically important in Cameroon. Thus the knowledge on their chemical composition could help in functional food elaboration. Purpose: In this study, Proximate composition, fatty acid profiles and mineral composition were determined in two fish species, Pseudotolithus typus and Pseudotolithus elongatus from Cameroonian coasts. Basic procedure: AOAC standard method was used. Fatty acids were identified by GC/MS as N-acylpyrolidides. Mineral compositions were determined by atomic absorption spectrophotometry for Ca, Na, K, Mg, Fe, Zn, Cu, Mn, and by UV spectrophotometry for phosphorus (P). Main finding: Results indicated that chemical composition was not similar in the two fish species. Results also showed that water is the main constituent in the edible parts and in the bones with 76.17% to 78.24% and 51.21% to 55.28% respectively. Pseudotolithus typus and Pseudotolithus elongatus were good sources of proteins with 16.17% and 13.4% respectively. All the fish analyzed for fat were lean with fat contents less than 0.5%. These species of fish were poor in ω6PUFA and were rich in ω3PUFA with about one third of total fatty acids. The main ω3 fatty acids were eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). The most abundant main elements were the potassium in the edible parts (1.39%) and calcium in the bones (18.26%). The most abundant trace elements were Zn and Fe in the edible parts and in the bones. Principal conclusion: The Na/K ratio values and ω3 fatty acids contents suggest that consumption of these two fish species could be recommended to prevent cardiovascular diseases. Keywords: Proximal composition, Mineral content, Fatty acid profiles, Pseudotolithus typus, Pseudotolithus elongate

    Changes in faecal bacteria and metabolic parameters in foals during the first six weeks of life

    No full text
    Many foals develop diarrhoea within the first two weeks of life which has been suggested to coincide with postpartum oestrus in their dams. To analyse the pathogenesis of this diarrhoea we have determined faecal bacteria in foals and their dams (n=30 each), and serum IGF-1 and gamma-globulins for 6 weeks after birth. In addition, effects of beta-carotene supplementation to mares (group 1: 1000 mg/day, n=15, group 2: control, n=15) on diarrhoea in foals were studied. Diarrhoea occurred in 92 and 79% of foals in groups 1 and 2, respectively, but was not correlated with oestrus in mares. Beta-carotene supplementation was without effect on foal diarrhoea. In mares, bacterial flora remained stable. The percentage of foals with cultures positive for E. coli was low at birth but increased within one day, the percentage positive for Enterococcus sp. was low for 10 days and for Streptococcus sp. and Staphylococcus sp. was low for 2-4 weeks. By 4 weeks of age, bacterial flora in foals resembled an adult pattern. Concentration of serum IGF-1 was low at birth (group 1: 149 +/- 11, group 2: 166 +/- 17ng/ml), increased after day 1 (day 7 group 1: 384 +/- 30, group 2: 372 +/- 36) but at no time differed between groups. Serum gamma-globulin concentration in foals was low before colostrum intake and highest on day 1 (p<0.001 over time). In conclusion, neonatal diarrhoea in foals does not coincide with postpartum oestrus in their dams but with changes in intestinal bacteria and is not influenced by beta-carotene supplementation given to mares

    Role of endocytosis in cellular uptake of sex steroids

    No full text
    Androgens and estrogens are transported bound to the sex hormone binding globulin (SHBG). SHBG is believed to keep sex steroids inactive and to control the amount of free hormones that enter cells by passive diffusion. Contrary to the free hormone hypothesis, we demonstrate that megalin, an endocytic receptor in reproductive tissues, acts as a pathway for cellular uptake of biologically active androgens and estrogens bound to SHBG. In line with this function, lack of receptor expression in megalin knockout mice results in impaired descent of the testes into the scrotum in males and blockade of vagina opening in females. Both processes are critically dependent on sex-steroid signaling, and similar defects are seen in animals treated with androgen- or estrogen-receptor antagonists. Thus, our findings uncover the existence of endocytic pathways for protein bound androgens and estrogens and their crucial role in development of the reproductive organs
    corecore