1,342 research outputs found

    Theory of Kondo lattices and its application to high-temperature superconductivity and pseudo-gaps in cuprate oxides

    Full text link
    A theory of Kondo lattices is developed for the t-J model on a square lattice. The spin susceptibility is described in a form consistent with a physical picture of Kondo lattices: Local spin fluctuations at different sites interact with each other by a bare intersite exchange interaction, which is mainly composed of two terms such as the superexchange interaction, which arises from the virtual exchange of spin-channel pair excitations of electrons across the Mott-Hubbard gap, and an exchange interaction arising from that of Gutzwiller's quasi-particles. The bare exchange interaction is enhanced by intersite spin fluctuations developed because of itself. The enhanced exchange interaction is responsible for the development of superconducting fluctuations as well as the Cooper pairing between Gutzwiller's quasi-particles. On the basis of the microscopic theory, we develop a phenomenological theory of low-temperature superconductivity and pseudo-gaps in the under-doped region as well as high-temperature superconductivity in the optimal-doped region. Anisotropic pseudo-gaps open mainly because of d\gamma-wave superconducting low-energy fluctuations: Quasi-particle spectra around (\pm\pi/a,0) and (0,\pm\pi/a), with a the lattice constant, or X points at the chemical potential are swept away by strong inelastic scatterings, and quasi-particles are well defined only around (\pm\pi/2a,\pm\pi/2a) on the Fermi surface or line. As temperatures decrease in the vicinity of superconducting critical temperatures, pseudo-gaps become smaller and the well-defined region is extending toward X points. The condensation of d\gamma-wave Cooper pairs eventually occurs at low enough temperatures when the pair breaking by inelastic scatterings becomes small enough.Comment: 15 pages, 14 figure

    Optical properties of a two-dimensional electron gas at even-denominator filling fractions

    Full text link
    The optical properties of an electron gas in a magnetic field at filling fractions \nu = {1\over 2m} (m=1,2,3...) are investigated using the composite fermion picture. The response of the system to the presence of valence-band holes is calculated. The shapes of the emission spectra are found to differ qualitatively from the well-known electron-hole results at zero magnetic field. In particular, the asymmetry of the emission lineshape is found to be sensitive to the hole-composite fermion plane separation.Comment: 17 pages, LaTeX, 7 figures. This revised version is to appear in Physical Review

    Analytical solution of generalized Burton--Cabrera--Frank equations for growth and post--growth equilibration on vicinal surfaces

    Full text link
    We investigate growth on vicinal surfaces by molecular beam epitaxy making use of a generalized Burton--Cabrera--Frank model. Our primary aim is to propose and implement a novel analytical program based on a perturbative solution of the non--linear equations describing the coupled adatom and dimer kinetics. These equations are considered as originating from a fully microscopic description that allows the step boundary conditions to be directly formulated in terms of the sticking coefficients at each step. As an example, we study the importance of diffusion barriers for adatoms hopping down descending steps (Schwoebel effect) during growth and post-growth equilibration of the surface.Comment: 16 pages, REVTeX 3.0, IC-DDV-94-00

    El impacto de la presencia online en las cuentas de Twitter de las universidades vascas y navarras

    Get PDF
    Las Universidades han tenido que adaptarse a los nuevos modelos de comunicación surgidos en la época de Internet. Dentro de estos nuevos paradigmas las redes sociales han irrumpido y Twitter se ha establecido como una de las más importantes. El objetivo de esta investigación es demostrar que existe una relación entre la presencia online de una Universidad, definida por la cantidad de información disponible en Internet, y su cuenta en Twitter. Para ello se analizó la relación entre la presencia online y los perfiles oficiales de las cinco universidades del País Vasco y Navarra. Los resultados demostraron la existencia de una correlación significativa entre la presencia online de las instituciones y el número de seguidores de sus respectivas cuentas. En segundo lugar, esta investigación se planteó si Twitter puede servir para potenciar la presencia online de una Universidad. Por eso que se formuló una segunda hipótesis que buscaba analizar si tener varias cuentas en Twitter aumentaría la presencia online de las Universidades. Los hallazgos para esta segunda hipótesis demostraron una correlación muy significativa entre tener varios perfiles en Twitter y la presencia online de las Universidades. Así queda demostrada la importancia de la presencia online para las cuentas de Twitter y la relevancia de Twitter a la hora de potenciar la presencia online de los centros.The universities have needed to adapt to the new models of communication that the Internet era has brought. Within these new models the social media have appeared and Twitter has established itself as one of the most important social network sites. The purpose of the present study is to show whether the online presence defined by information available on Internet of a university, and its Twitter account are related. To test this idea, a correlation analysis between the online presence of the five Basque and Navarre universities and their official Twitter profiles was conducted. The results indicated a significant direct correlation between the online presence of the Institutions and the number of followers of each account respectively. Furthermore, a second hypothesis was formulated in order to confirm whether having several Twitter accounts would increase the online presence of these universities. A strong and statistically significant correlation between having several Twitter accounts and the increase of the online presence of these universities was found. These results demonstrate the importance of the online presence to the Twitter accounts and the relevance of Twitter to increase the online presence of the universities

    Quantitative Comparison of Sinc-Approximating Kernels for Medical Image Interpolation

    Full text link
    Abstract. Interpolation is required in many medical image processing operations. From sampling theory, it follows that the ideal interpolation kernel is the sinc function, which is of infinite extent. In the attempt to obtain practical and computationally efficient image processing al-gorithms, many sinc-approximating interpolation kernels have been de-vised. In this paper we present the results of a quantitative comparison of 84 different sinc-approximating kernels, with spatial extents ranging from 2 to 10 grid points in each dimension. The evaluation involves the application of geometrical transformations to medical images from dif-ferent modalities (CT, MR, and PET), using the different kernels. The results show very clearly that, of all kernels with a spatial extent of 2 grid points, the linear interpolation kernel performs best. Of all kernels with an extent of 4 grid points, the cubic convolution kernel is the best (28 %- 75 % reduction of the errors as compared to linear interpolation). Even better results (44 %- 95 % reduction) are obtained with kernels of larger extent, notably the Welch, Cosine, Lanczos, and Kaiser windowed sinc kernels. In general, the truncated sinc kernel is one of the worst performing kernels.

    Bosonic Excitations in Random Media

    Full text link
    We consider classical normal modes and non-interacting bosonic excitations in disordered systems. We emphasise generic aspects of such problems and parallels with disordered, non-interacting systems of fermions, and discuss in particular the relevance for bosonic excitations of symmetry classes known in the fermionic context. We also stress important differences between bosonic and fermionic problems. One of these follows from the fact that ground state stability of a system requires all bosonic excitation energy levels to be positive, while stability in systems of non-interacting fermions is ensured by the exclusion principle, whatever the single-particle energies. As a consequence, simple models of uncorrelated disorder are less useful for bosonic systems than for fermionic ones, and it is generally important to study the excitation spectrum in conjunction with the problem of constructing a disorder-dependent ground state: we show how a mapping to an operator with chiral symmetry provides a useful tool for doing this. A second difference involves the distinction for bosonic systems between excitations which are Goldstone modes and those which are not. In the case of Goldstone modes we review established results illustrating the fact that disorder decouples from excitations in the low frequency limit, above a critical dimension dcd_c, which in different circumstances takes the values dc=2d_c=2 and dc=0d_c=0. For bosonic excitations which are not Goldstone modes, we argue that an excitation density varying with frequency as ρ(ω)ω4\rho(\omega) \propto \omega^4 is a universal feature in systems with ground states that depend on the disorder realisation. We illustrate our conclusions with extensive analytical and some numerical calculations for a variety of models in one dimension

    Identification of Multiple Subsets of Ventral Interneurons and Differential Distribution along the Rostrocaudal Axis of the Developing Spinal Cord

    Get PDF
    The spinal cord contains neuronal circuits termed Central Pattern Generators (CPGs) that coordinate rhythmic motor activities. CPG circuits consist of motor neurons and multiple interneuron cell types, many of which are derived from four distinct cardinal classes of ventral interneurons, called V0, V1, V2 and V3. While significant progress has been made on elucidating the molecular and genetic mechanisms that control ventral interneuron differentiation, little is known about their distribution along the antero-posterior axis of the spinal cord and their diversification. Here, we report that V0, V1 and V2 interneurons exhibit distinct organizational patterns at brachial, thoracic and lumbar levels of the developing spinal cord. In addition, we demonstrate that each cardinal class of ventral interneurons can be subdivided into several subsets according to the combinatorial expression of different sets of transcription factors, and that these subsets are differentially distributed along the rostrocaudal axis of the spinal cord. This comprehensive molecular profiling of ventral interneurons provides an important resource for investigating neuronal diversification in the developing spinal cord and for understanding the contribution of specific interneuron subsets on CPG circuits and motor control

    Is Vtb=1 ?

    Full text link
    The strongest constraint on Vtb presently comes from the 3 x 3 unitarity of the CKM matrix, which fixes Vtb to be very close to one. If the unitarity is relaxed, current information from top production at Tevatron still leaves open the possibility that Vtb is sizably smaller than one. In minimal extensions of the standard model with extra heavy quarks, the unitarity constraints are much weaker and the EW precision parameters entail the strongest bounds on Vtb. We discuss the experimental perspectives of discovering and identifying such new physics models at the Tevatron and the LHC, through a precise measurement of Vtb from the single top cross sections and by the study of processes where the extra heavy quarks are produced.Comment: 19 pages, 8 figure

    Supersymmetric solutions of PT-/non-PT-symmetric and non-Hermitian Screened Coulomb potential via Hamiltonian hierarchy inspired variational method

    Get PDF
    The supersymmetric solutions of PT-symmetric and Hermitian/non-Hermitian forms of quantum systems are obtained by solving the Schrodinger equation for the Exponential-Cosine Screened Coulomb potential. The Hamiltonian hierarchy inspired variational method is used to obtain the approximate energy eigenvalues and corresponding wave functions.Comment: 13 page

    Non-Equilibrium Statistical Physics of Currents in Queuing Networks

    Get PDF
    We consider a stable open queuing network as a steady non-equilibrium system of interacting particles. The network is completely specified by its underlying graphical structure, type of interaction at each node, and the Markovian transition rates between nodes. For such systems, we ask the question ``What is the most likely way for large currents to accumulate over time in a network ?'', where time is large compared to the system correlation time scale. We identify two interesting regimes. In the first regime, in which the accumulation of currents over time exceeds the expected value by a small to moderate amount (moderate large deviation), we find that the large-deviation distribution of currents is universal (independent of the interaction details), and there is no long-time and averaged over time accumulation of particles (condensation) at any nodes. In the second regime, in which the accumulation of currents over time exceeds the expected value by a large amount (severe large deviation), we find that the large-deviation current distribution is sensitive to interaction details, and there is a long-time accumulation of particles (condensation) at some nodes. The transition between the two regimes can be described as a dynamical second order phase transition. We illustrate these ideas using the simple, yet non-trivial, example of a single node with feedback.Comment: 26 pages, 5 figure
    corecore