4 research outputs found

    Charge-Coupled Device Panoramic Radiography: Area Image Distortion Factors as Selected Image Layer Contours

    Get PDF
    Svrha: Svrha ove studije bila je odrediti svojstva čimbenika izobličenja kontura razlučivanja odabranog sloja slike ortopantomografa OP 100®Instrumentarium Imaging, Tuusula, Finland) kombiniranog sa senzorom vrste CCD (charge-coupled device) tipa (Trophy Radiologie, Vincennes, France). Materijal i metode: Upotrebom mreže kojom se određuje razlučivanje postavljene u razmacima uzduž iskustveno ustanovljenih putanja projekcijskog snopa, konture sloja slike proizvodene ortopantomografom OP 100® modificiranim s osjetilom DigiPan® prethodno su određene za granice razlučivanja od 4,0, 3,0 i 1,5 lp m m 1. Za određivanje čimbenika povećanja uz odabrane granice razlučivanja i vodoravne angulacije snopa bila je upotrebljena jedna šestokutna ispitna naprava, uz uporabu mjernog algoritma koji pripada vlastitom softwareu (programskoj podršci) osjetila DigiPan®. Zatim su upotrebljena vodoravna i okomita povećanja kako be se odredili čimbenici izobličenja za svaku konturu razlučivanja uzduž odabrane angulacije snopa. Rezultati: Uz konture razlučivanja sloja slike od 4 lp m m 1 svi čimbenici izobličenja površine bili su približno jedinica. U području omeđenom tim konturama razlučivanja mjerni je algoritam kompenzirao učinke izobličenja svojstvene povećanju, uzrokovanom geometrijom snopa X-zraka. Uz 1,5 lp m m 1 čimbenici izobličenja površine kretali su se od 1,16 do 1,19 facijalno i 1,14 do 1,22 lingvalno u odnosu prema konturi sloja slike najvećeg razlučivanja. Kontura sloja slike s najvećim prostornim razlučivanjem bila je postavljena lingvalno u odnosu spram geometrijskome središtu žarišta. Zaključak: Upotrebom osjetila DigiPan® i uređaja OP 100® ustanovljene vrijednosti izobličenja odgovaraju vrijednostima već ustanovljenim s pomoću konvencionalnih receptora vrste film/zaslon. U području najvećeg razlučivanja mjerni algoritam programa djelotvorno je kompenzirao izobličenje povećanja projekcionog snopa.Objectives: The aim of this study was to determine the distortion factor characteristics for selected image layer resolution contours of the Orthopantomograph OP 100® (Instrumentarium Imaging, Tuusula, Finland), combined with the DigiPan® (Trophy Radiologie, Vincennes, France) charge-coupled device receptor. Material and Methods: Using a resolution grid positioned at intervals along empirically determined beam projection paths, the image layer contours produced with the DigiPan® modification o f the Orthopantomograph OP 100® had previously been determined for resolution limits o f 4.0, 3.0 and 1.5 Ip m m 1. An hexagonal test device was used to determine the magnification factors at the selected resolution limits and horizontal beam angulations using the resident measurement algorithm o f the DigiPan® proprietary software. The horizontal and vertical magnifications were then used to determine the distortion factors at each resolution contour along selected beam angulations. Results: At the image layer resolution contours of 4 Ip m m 1 all area distortion factors approached unity. Furthermore, in the region bounded by these resolution contours the measurement algorithm compensated for the inherent magnification distortion artefact caused by the X-ray beam geometry. At 1.5 Ip m m 1, the area distortion factors ranged from 1.16 to 1.19 facially and 1.14 to 1.22 lingually to image layer contour of maximum resolution. The image layer contour of maximum spatial resolution was positioned lingually to the geometric center o f the focal trough. Conclusion: Using the DigiPan®, and the op 100® the distortion values conform o f those previously found using conventional film/screen receptors. In the region o f maximum resolution, the software measurement algotirhm effectively compensated for beam- projection magnification distortion

    World Workshop on Oral Medicine VI: Utilization of Oral Medicine-specific software for support of clinical care, research, and education: Current status and strategy for broader implementation

    No full text
    Objectives To assess the current scope and status of Oral Medicine-specific software (OMSS) utilized to support clinical care, research, and education in Oral Medicine and to propose a strategy for broader implementation of OMSS within the global Oral Medicine community. Study Design An invitation letter explaining the objectives was sent to the global Oral Medicine community. Respondents were interviewed to obtain information about different aspects of OMSS functionality. Results Ten OMSS tools were identified. Four were being used for clinical care, one was being used for research, two were being used for education, and three were multipurpose. Clinical software was being utilized as databases developed to integrate of different type of clinical information. Research software was designed to facilitate multicenter research. Educational software represented interactive, case-orientated technology designed for clinical training in Oral Medicine. Easy access to patient data was the most commonly reported advantage. Difficulty of use and poor integration with other software was the most commonly reported disadvantage. Conclusions The OMSS presented in this paper demonstrate how information technology (IT) can have an impact on the quality of patient care, research, and education in the field of Oral Medicine. A strategy for broader implementation of OMSS is proposed. © 2015 Elsevier Inc

    World Workshop on Oral Medicine VI: Utilization of Oral Medicine-specific software for support of clinical care, research, and education: Current status and strategy for broader implementation

    No full text
    Objectives To assess the current scope and status of Oral Medicine-specific software (OMSS) utilized to support clinical care, research, and education in Oral Medicine and to propose a strategy for broader implementation of OMSS within the global Oral Medicine community. Study Design An invitation letter explaining the objectives was sent to the global Oral Medicine community. Respondents were interviewed to obtain information about different aspects of OMSS functionality. Results Ten OMSS tools were identified. Four were being used for clinical care, one was being used for research, two were being used for education, and three were multipurpose. Clinical software was being utilized as databases developed to integrate of different type of clinical information. Research software was designed to facilitate multicenter research. Educational software represented interactive, case-orientated technology designed for clinical training in Oral Medicine. Easy access to patient data was the most commonly reported advantage. Difficulty of use and poor integration with other software was the most commonly reported disadvantage. Conclusions The OMSS presented in this paper demonstrate how information technology (IT) can have an impact on the quality of patient care, research, and education in the field of Oral Medicine. A strategy for broader implementation of OMSS is proposed
    corecore