681 research outputs found

    Hadron Masses From Novel Fat-Link Fermion Actions

    Get PDF
    The hadron mass spectrum is calculated in lattice QCD using a novel fat-link clover fermion action in which only the irrelevant operators in the fermion action are constructed using smeared links. The simulations are performed on a 16^3 x 32 lattice with a lattice spacing of a=0.125 fm. We compare actions with n=4 and 12 smearing sweeps with a smearing fraction of 0.7. The n=4 Fat-Link Irrelevant Clover (FLIC) action provides scaling which is superior to mean-field improvement, and offers advantages over nonperturbative 0(a) improvement, including a reduced exceptional configuration problem.Comment: 12 pages, 4 figures, new simulation with mean-field improved clover, further discussion of actio

    Study of railway curve squeal in the time domain using a high-frequency vehicle/track interaction model

    Full text link
    [EN] Railway curve squeal is an intense tonal and annoying type of noise commonly attributed to self-excited vibrations during curving. The mechanisms for its generation remain unclear and it is still a subject of discussion among researchers. Most of them have considered the falling behaviour of the friction coefficient with the slip velocity essential for reenergising the system. Recently, some authors have found that squeal can also appear even for constant friction coefficient through the wheel modal coupling between the normal and tangential directions caused by the wheel/rail contact. This paper particularly evaluates whether the latter mechanism is sufficient to find squeal in curving conditions. The introduction of flexibility in the railway subsystems is required to widen the domain to the high-frequency range in which squeal occurs. One single flexible and rotatory wheelset is considered and suitable forces are prescribed at the primary suspension seats in the current investigation. The rails are modelled through the Moving Element Method (MEM), permitting to extend the range of validity of beam models usually utilised in the literature. This work extends the formulation to rails supported by a viscoelastic Winkler bedding. Both wheelset and track models are coupled by means of a non-linear and unsteady wheel/rail contact model based on Kalker¿s Variational Theory. Simulation results for different track curvatures and friction coefficients are presented and discussed, showing tonal peaks in the tangential contact forces of the inner wheel. These results can be associated with squeal according to the characterisation of this phenomenon, indicating that squeal can be found in curving conditions using advanced dynamic interaction models even with constant friction coefficient.The authors gratefully acknowledge the financial support of Spanish Ministry of Economy, Industry and Competitiveness and the European Regional Development Fund (project TRA2017-84701-R), as well as Generalitat Valenciana (project Prometeo/2016/007) and European Commission through the project "RUN2Rail - Innovative RUNning gear soluTiOns for new dependable, sustainable, intelligent and comfortable RAIL vehicles" (Horizon 2020 Shift2Rail JU call 2017, grant number 777564).Giner Navarro, J.; Martínez Casas, J.; Denia, FD.; Baeza González, LM. (2018). Study of railway curve squeal in the time domain using a high-frequency vehicle/track interaction model. Journal of Sound and Vibration. 431:177-191. https://doi.org/10.1016/j.jsv.2018.06.004S17719143

    Improved railway wheelset-track interaction model in the high-frequency domain

    Full text link
    [EN] As it is well known, there are various phenomena related to railway train-track interaction, some of them caused by the high frequency dynamics of the system, such as rolling noise when the vehicle runs over the track, as well as squeal noise and short-pitch rail corrugation for curved tracks. Due to these phenomena and some others unsolved so far, a large effort has been made over the last 40 years in order to define suitable models to study the train-track interaction. The introduction of flexibility in wheelset and rail models was required to have a more realistic representation of the wheel-rail interaction effects at high frequencies. In recently published train-track interaction models, the rails are modelled by means of Timoshenko beam elements, valid up to 1.5 kHz for lateral rail vibration and up to 2 kHz for vertical vibration. This confines the frequency range of validity for the complete train-track model to 1.5 kHz. With the purpose of extending the range of validity above 1.5 kHz, a 3D track model based on the Moving Element Method (MEM) is developed in this paper to replace the Timoshenko beam considered in earlier studies, adopting cyclic boundary conditions and Eulerian coordinates. The MEM approach considers a mobile Finite Element (FE) mesh which moves with the vehicle, so the mass of the rail flows with the vehicle speed but in the opposite direction through the mesh. Therefore, the MEM permits to fix the contact area in the middle of a finitely long track and to refine the mesh only around the contact area, where the forces and displacements will be more significant. Additionally, a modal approach is adopted in order to reduce the number of degrees of freedom of the rail model. Both strategies lower substantially the computational cost. Simulation results are presented and discussed for different excitation sources including random rail roughness and singularities such as wheel flats. All the simulation cases are carried out for a Timoshenko beam and a 3D MEM track model in order to point out the differences in the contact forces above the range of validity of the Timoshenko beam.The authors gratefully acknowledge the financial support of Ministerio de Economía y Competitividad and the European Regional Development Fund (project TRA2013-45596-C2-1-R), as well as Generalitat Valenciana (project Prometeo/2012/023) and Ministerio de Educación, Cultura y Deporte (project SP20140659) as part of Programa Campus de Excelencia Internacional.Martínez Casas, J.; Giner Navarro, J.; Baeza González, LM.; Denia Guzmán, FD. (2017). Improved railway wheelset-track interaction model in the high-frequency domain. Journal of Computational and Applied Mathematics. 309(1):642-653. https://doi.org/10.1016/j.cam.2016.04.034S642653309

    Excited Baryons in Lattice QCD

    Get PDF
    We present first results for the masses of positive and negative parity excited baryons calculated in lattice QCD using an O(a^2)-improved gluon action and a fat-link irrelevant clover (FLIC) fermion action in which only the irrelevant operators are constructed with APE-smeared links. The results are in agreement with earlier calculations of N^* resonances using improved actions and exhibit a clear mass splitting between the nucleon and its chiral partner. An correlation matrix analysis reveals two low-lying J^P=(1/2)^- states with a small mass splitting. The study of different Lambda interpolating fields suggests a similar splitting between the lowest two Lambda1/2^- octet states. However, the empirical mass suppression of the Lambda^*(1405) is not evident in these quenched QCD simulations, suggesting a potentially important role for the meson cloud of the Lambda^*(1405) and/or a need for more exotic interpolating fields.Comment: Correlation matrix analysis performed. Increased to 400 configurations. 22 pages, 13 figures, 15 table

    The dynamic centres of infrared-dark clouds and the formation of cores

    Get PDF
    High-mass stars have an enormous influence on the evolution of the interstellar medium in galaxies, so it is important that we understand how they form. We examine the central clumps within a sample of seven infrared-dark clouds (IRDCs) with a range of masses and morphologies. We use 1-pc-scale observations from the Northern Extended Millimeter Array (NOEMA) and the IRAM 30m telescope to trace dense cores with 2.8-mm continuum, and gas kinematics in C18O, HCO+, HNC, and N2H+ (J = 1–0). We supplement our continuum sample with six IRDCs observed at 2.9 mm with the Atacama Large Millimeter/submillimeter Array (ALMA), and examine the relationships between core- and clump-scale properties. We have developed a fully automated multiple-velocity component hyperfine line-fitting code called MWYDYN which we employ to trace the dense gas kinematics in N2H+ (1–0), revealing highly complex and dynamic clump interiors. We find that parsec-scale clump mass is the most important factor driving the evolution; more massive clumps are able to concentrate more mass into their most massive cores – with a log-normally distributed efficiency of around 9 per cent – in addition to containing the most dynamic gas. Distributions of linewidths within the most massive cores are similar to the ambient gas, suggesting that they are not dynamically decoupled, but are similarly chaotic. A number of studies have previously suggested that clumps are globally collapsing; in such a scenario, the observed kinematics of clump centres would be the direct result of gravity-driven mass inflows that become ever more complex as the clumps evolve, which in turn leads to the chaotic mass growth of their core populations

    Acceptance and Use of E-Learning Based on Cloud Computing: The Role of Consumer Innovativeness

    Get PDF
    Cloud computing and E-learning are the inevitable trend of computational science in general, and information systems and technologies in specific.However, there are not many studies on the adoption of cloud-based E-learning systems. Moreover, while there are many papers on information system adoption as well as customer innovativeness, the innovativeness and adoption in the same model seems to be rare in the literature. The study combines the extended Unified Theory of Acceptance and Use of Technology (UTAUT2) and consumer innovativeness on the adoption of E-learning systems based on cloud computing. A survey was conducted among 282 cloud-based E-learning participants and analyzed by structural equation modeling (SEM). The findings indicate that the adoption of cloud-based E-learning is influenced by performance expectancy, social influence, hedonic motivation, and habit. Interestingly, although innovativeness is not significant to use intention, it has a positive effect on E-learning usage which is relatively new in Vietnam

    What Drives Fitness Apps Usage? An Empirical Evaluation

    Get PDF
    Part 3: Creating Value through ApplicationsInternational audienceThe increased health problems associated with lack of physical activity is of great concern around the world. Mobile phone based fitness applications appear to be a cost effective promising solution for this problem. The aim of this study is to develop a research model that can broaden understanding of the factors that influence the user acceptance of mobile fitness apps. Drawing from Unified Theory of Acceptance and Use of Technology (UTAUT) and Elaboration Likelihood Model (ELM), we conceptualize the antecedents and moderating factors of fitness app use. We validate our model using field survey. Implications for research and practice are discussed

    Making things happen : a model of proactive motivation

    Get PDF
    Being proactive is about making things happen, anticipating and preventing problems, and seizing opportunities. It involves self-initiated efforts to bring about change in the work environment and/or oneself to achieve a different future. The authors develop existing perspectives on this topic by identifying proactivity as a goal-driven process involving both the setting of a proactive goal (proactive goal generation) and striving to achieve that proactive goal (proactive goal striving). The authors identify a range of proactive goals that individuals can pursue in organizations. These vary on two dimensions: the future they aim to bring about (achieving a better personal fit within one’s work environment, improving the organization’s internal functioning, or enhancing the organization’s strategic fit with its environment) and whether the self or situation is being changed. The authors then identify “can do,” “reason to,” and “energized to” motivational states that prompt proactive goal generation and sustain goal striving. Can do motivation arises from perceptions of self-efficacy, control, and (low) cost. Reason to motivation relates to why someone is proactive, including reasons flowing from intrinsic, integrated, and identified motivation. Energized to motivation refers to activated positive affective states that prompt proactive goal processes. The authors suggest more distal antecedents, including individual differences (e.g., personality, values, knowledge and ability) as well as contextual variations in leadership, work design, and interpersonal climate, that influence the proactive motivational states and thereby boost or inhibit proactive goal processes. Finally, the authors summarize priorities for future researc
    • …
    corecore