31 research outputs found

    HAS-1 genetic polymorphism in sporadic abdominal aortic aneurysm

    Get PDF
    The hyaluronan synthase 1 (HAS-1) gene encodes a plasma membrane protein that synthesizes hyaluronan (HA), an extracellular matrix molecule. Accumulating evidence emphasizes the relevance of HA metabolism in an increasing number of processes of clinical interest, including abdominal aortic aneurysm (AAA). The existence of aberrant splicing variants of the HAS-1 gene could partly explain the altered extracellular matrix architecture and influence various biological functions, resulting in progressive arterial wall failure in the development of AAA. In the present study, we assessed the hypothesis that HAS-1 genetic 833A/G polymorphism could be associated with the risk of AAA by performing a case-control association study, involving AAA patients and healthy matched donors

    Polymer-free immobilization of a cyclic RGD peptide on a nitinol stent promotes integrin-dependent endothelial coverage of strut surfaces

    No full text
    This study examined the utility of a stabilized cyclic RGD peptide chemically modified to selectively bind to titanium-oxide for enhanced biocompatibility of self-expanding nitinol stents. Endothelial cells express integrin receptors that promote attachment to subendothelial matrix proteins. Integrin binding to arginine-glycine-aspartic acid (RGD) peptide derivatives mimic naturally occurring adherent interactions. Irreversible covalent surface coating of conventional nitinol stents with a cyclic RGD (cRGD) peptide highly specific for integrin alpha v beta 3 might foster endothelialization after stent implantation. A selective cRGD peptide was irreversibly immobilized onto titanium oxide-rich nitinol coupons or self-expanding stents. Functionality of the engrafted RGD peptide was demonstrated using in vitro endothelial bioassays. A subsequent 7-day in vivo endothelialization study was performed using cRGD-coated self-expanding nitinol stents in rabbits. cRGD peptide coating effectively promoted endothelial cell anchorage, migration, and proliferation confirmed by increased focal adhesions. Proof-of-concept studies of rabbit cRGD stent implants showed a significant increase in endothelial coverage above stent struts relative to stents coated with BSA (cRGD = 70.1 ± 21.9 vs. BSA = 49.9 ± 21.8%, p < 0.03). Immobilization of cRGD peptides on strut surfaces represents an innovative strategy to improve endothelialization, which may facilitate vascular healing after stent implantatioPeer ReviewedPostprint (published version

    Thin-Walled microvessels in human coronary atherosclerotic plaques show incomplete endothelial junctions relevance of compromised structural integrity for intraplaque microvascular leakage

    Get PDF
    This study sought to examine the ultrastructure of microvessels in normal and atherosclerotic coronary arteries and its association with plaque phenotype. Microvessels in atherosclerotic plaques are an entry point for inflammatory and red blood cells; yet, there are limited data on the ultrastructural integrity of microvessels in human atherosclerosis. Microvessel density (MVD) and ultrastructural morphology were determined in the adventitia, intima-media border, and atherosclerotic plaque of 28 coronary arteries using immunohistochemistry for endothelial cells (Ulex europeaus, CD31/CD34), basement membrane (laminin, collagen IV), and mural cells (desmin, alpha-smooth muscle [SM] actin, smoothelin, SM1, SM2, SMemb). Ultrastructural characterization of microvessel morphology was performed by electron microscopy. The MVD was increased in advanced plaques compared with early plaques, which correlated with lesion morphology. Adventitial MVD was higher than intraplaque MVD in normal arteries and early plaques, but adventitial and intraplaque MVD were similar in advanced plaques. Although microvessel basement membranes were intact, the percentage of thin-walled microvessels was similarly low in normal and atherosclerotic adventitia, in the adventitia and the plaque, and in all plaque types. Intraplaque microvascular endothelial cells (ECs) were abnormal, with membrane blebs, intracytoplasmic vacuoles, open EC-EC junctions, and basement membrane detachment. Leukocyte infiltration was frequently observed by electron microscopy, and confirmed by CD45RO and CD68 immunohistochemistry. The MVD was associated with coronary plaque progression and morphology. Microvessels were thin-walled in normal and atherosclerotic arteries, and the compromised structural integrity of microvascular endothelium may explain the microvascular leakage responsible for intraplaque hemorrhage in advanced human coronary atherosclerosi

    Polymer-free immobilization of a cyclic RGD peptide on a nitinol stent promotes integrin-dependent endothelial coverage of strut surfaces

    No full text
    This study examined the utility of a stabilized cyclic RGD peptide chemically modified to selectively bind to titanium-oxide for enhanced biocompatibility of self-expanding nitinol stents. Endothelial cells express integrin receptors that promote attachment to subendothelial matrix proteins. Integrin binding to arginine-glycine-aspartic acid (RGD) peptide derivatives mimic naturally occurring adherent interactions. Irreversible covalent surface coating of conventional nitinol stents with a cyclic RGD (cRGD) peptide highly specific for integrin alpha v beta 3 might foster endothelialization after stent implantation. A selective cRGD peptide was irreversibly immobilized onto titanium oxide-rich nitinol coupons or self-expanding stents. Functionality of the engrafted RGD peptide was demonstrated using in vitro endothelial bioassays. A subsequent 7-day in vivo endothelialization study was performed using cRGD-coated self-expanding nitinol stents in rabbits. cRGD peptide coating effectively promoted endothelial cell anchorage, migration, and proliferation confirmed by increased focal adhesions. Proof-of-concept studies of rabbit cRGD stent implants showed a significant increase in endothelial coverage above stent struts relative to stents coated with BSA (cRGD = 70.1 ± 21.9 vs. BSA = 49.9 ± 21.8%, p < 0.03). Immobilization of cRGD peptides on strut surfaces represents an innovative strategy to improve endothelialization, which may facilitate vascular healing after stent implantatioPeer Reviewe
    corecore