44 research outputs found

    Enhancement of pair correlation in a one-dimensional hybridization model

    Get PDF
    We propose an integrable model of one-dimensional (1D) interacting electrons coupled with the local orbitals arrayed periodically in the chain. Since the local orbitals are introduced in a way that double occupation is forbidden, the model keeps the main feature of the periodic Anderson model with an interacting host. For the attractive interaction, it is found that the local orbitals enhance the effective mass of the Cooper-pair-like singlets and also the pair correlation in the ground state. However, the persistent current is depressed in this case. For the repulsive interaction case, the Hamiltonian is non-Hermitian but allows Cooper pair solutions with small momenta, which are induced by the hybridization between the extended state and the local orbitals.Comment: 11 page revtex, no figur

    Exact soliton solution and inelastic two-soliton collision in spin chain driven by a time-dependent magnetic field

    Full text link
    We investigate dynamics of exact N-soliton trains in spin chain driven by a time-dependent magnetic field by means of an inverse scattering transformation. The one-soliton solution indicates obviously the spin precession around the magnetic field and periodic shape-variation induced by the time varying field as well. In terms of the general soliton solutions N-soliton interaction and particularly various two-soliton collisions are analyzed. The inelastic collision by which we mean the soliton shape change before and after collision appears generally due to the time varying field. We, moreover, show that complete inelastic collisions can be achieved by adjusting spectrum and field parameters. This may lead a potential technique of shape control of soliton.Comment: 5 pages, 5 figure

    Generalized hole-particle transformations and spin reflection positivity in multi-orbital systems

    Full text link
    We propose a scheme combining spin reflection positivity and generalized hole-particle and orbital transformations to characterize the symmetry properties of the ground state for some correlated electron models on bipartite lattices. In particular, we rigorously determine at half-filling and for different regions of the parameter space the spin, orbital and η\eta pairing pseudospin of the ground state of generalized two-orbital Hubbard models which include the Hund's rule coupling.Comment: 6 pages, 2 figure

    Experimental progress in positronium laser physics

    Get PDF

    Magnetohydrodynamic Oscillations in the Solar Corona and Earth’s Magnetosphere: Towards Consolidated Understanding

    Full text link

    Topological Phases in One Dimension

    No full text
    corecore