440 research outputs found
Controlled Generation of Dark Solitons with Phase Imprinting
The generation of dark solitons in Bose-Einstein condensates with phase
imprinting is studied by mapping it into the classic problem of a damped driven
pendulum. We provide simple but powerful schemes of designing the phase imprint
for various desired outcomes. We derive a formula for the number of dark
solitons generated by a given phase step, and also obtain results which explain
experimental observations.Comment: 4pages, 4 figure
Differential constraints for the Kaup -- Broer system as a reduction of the 1D Toda lattice
It is shown that some special reduction of infinite 1D Toda lattice gives
differential constraints compatible with the Kaup -- Broer system. A family of
the travelling wave solutions of the Kaup -- Broer system and its higher
version is constructed.Comment: LaTeX, uses IOP styl
One-Dimensional Integrable Spinor BECs Mapped to Matrix Nonlinear Schr\"odinger Equation and Solution of Bogoliubov Equation in These Systems
In this short note, we construct mappings from one-dimensional integrable
spinor BECs to matrix nonlinear Schr\"odinger equation, and solve the
Bogoliubov equation of these systems. A map of spin- BEC is constructed from
the -dimensional spinor representation of irreducible tensor operators of
. Solutions of Bogoliubov equation are obtained with the aid of the
theory of squared Jost functions.Comment: 2.1 pages, JPSJ shortnote style. Published version. Note and
reference adde
Gurevich-Zybin system
We present three different linearizable extensions of the Gurevich-Zybin
system. Their general solutions are found by reciprocal transformations. In
this paper we rewrite the Gurevich-Zybin system as a Monge-Ampere equation. By
application of reciprocal transformation this equation is linearized.
Infinitely many local Hamiltonian structures, local Lagrangian representations,
local conservation laws and local commuting flows are found. Moreover, all
commuting flows can be written as Monge-Ampere equations similar to the
Gurevich-Zybin system. The Gurevich-Zybin system describes the formation of a
large scale structures in the Universe. The second harmonic wave generation is
known in nonlinear optics. In this paper we prove that the Gurevich-Zybin
system is equivalent to a degenerate case of the second harmonic generation.
Thus, the Gurevich-Zybin system is recognized as a degenerate first negative
flow of two-component Harry Dym hierarchy up to two Miura type transformations.
A reciprocal transformation between the Gurevich-Zybin system and degenerate
case of the second harmonic generation system is found. A new solution for the
second harmonic generation is presented in implicit form.Comment: Corrected typos and misprint
Completely integrable models of non-linear optics
The models of the non-linear optics in which solitons were appeared are
considered. These models are of paramount importance in studies of non-linear
wave phenomena. The classical examples of phenomena of this kind are the
self-focusing, self-induced transparency, and parametric interaction of three
waves. At the present time there are a number of the theories based on
completely integrable systems of equations, which are both generations of the
original known models and new ones. The modified Korteweg-de Vries equation,
the non- linear Schrodinger equation, the derivative non-linear Schrodinger
equation, Sine-Gordon equation, the reduced Maxwell-Bloch equation, Hirota
equation, the principal chiral field equations, and the equations of massive
Thirring model are gradually putting together a list of soliton equations,
which are usually to be found in non-linear optics theory.Comment: Latex, 17 pages, no figures, submitted to Pramana
Second harmonic generation: Goursat problem on the semi-strip and explicit solutions
A rigorous and complete solution of the initial-boundary-value (Goursat)
problem for second harmonic generation (and its matrix analog) on the
semi-strip is given in terms of the Weyl functions. A wide class of the
explicit solutions and their Weyl functions is obtained also.Comment: 20 page
Theory of Pump Depletion and Spike Formation in Stimulated Raman Scattering
By using the inverse spectral transform, the SRS equations are solved and the
explicit output data is given for arbitrary laser pump and Stokes seed profiles
injected on a vacuum of optical phonons. For long duration laser pulses, this
solution is modified such as to take into account the damping rate of the
optical phonon wave. This model is used to interprete the experiments of Druhl,
Wenzel and Carlsten (Phys. Rev. Lett., (1983) vol. 51, p. 1171), in particular
the creation of a spike of (anomalous) pump radiation. The related nonlinear
Fourier spectrum does not contain discrete eigenvalue, hence this Raman spike
is not a soliton.Comment: LaTex file, includes two figures in LaTex format, 9 page
Zero curvature representation for a new fifth-order integrable system
In this brief note we present a zero-curvature representation for one of the
new integrable system found by Mikhailov, Novikov and Wang in nlin.SI/0601046.Comment: 2 pages, LaTeX 2e, no figure
On the (Non)-Integrability of KdV Hierarchy with Self-consistent Sources
Non-holonomic deformations of integrable equations of the KdV hierarchy are
studied by using the expansions over the so-called "squared solutions" (squared
eigenfunctions). Such deformations are equivalent to perturbed models with
external (self-consistent) sources. In this regard, the KdV6 equation is viewed
as a special perturbation of KdV equation. Applying expansions over the
symplectic basis of squared eigenfunctions, the integrability properties of the
KdV hierarchy with generic self-consistent sources are analyzed. This allows
one to formulate a set of conditions on the perturbation terms that preserve
the integrability. The perturbation corrections to the scattering data and to
the corresponding action-angle variables are studied. The analysis shows that
although many nontrivial solutions of KdV equations with generic
self-consistent sources can be obtained by the Inverse Scattering Transform
(IST), there are solutions that, in principle, can not be obtained via IST.
Examples are considered showing the complete integrability of KdV6 with
perturbations that preserve the eigenvalues time-independent. In another type
of examples the soliton solutions of the perturbed equations are presented
where the perturbed eigenvalue depends explicitly on time. Such equations,
however in general, are not completely integrable.Comment: 16 pages, no figures, LaTe
Dynamical Evolution of Boson Stars II: Excited States and Self-Interacting Fields
The dynamical evolution of self-gravitating scalar field configurations in
numerical relativity is studied. The previous analysis on ground state boson
stars of non-interacting fields is extended to excited states and to fields
with self couplings.
Self couplings can significantly change the physical dimensions of boson
stars, making them much more astrophysically interesting (e.g., having mass of
order 0.1 solar mass). The stable () and unstable () branches of
equilibrium configurations of boson stars of self-interacting fields are
studied; their behavior under perturbations and their quasi-normal oscillation
frequencies are determined and compared to the non-interacting case.
Excited states of boson stars with and without self-couplings are studied and
compared. Excited states also have equilibrium configurations with and
branch structures; both branches are intrinsically unstable under a generic
perturbation but have very different instability time scales. We carried out a
detailed study of the instability time scales of these configurations. It is
found that highly excited states spontaneously decay through a cascade of
intermediate states similar to atomic transitions.Comment: 16 pages+ 13 figures . All figures are available at
http://wugrav.wustl.edu/Paper
- …