561 research outputs found

    Quantum squeezing of motion in a mechanical resonator

    Get PDF
    As a result of the quantum, wave-like nature of the physical world, a harmonic oscillator can never be completely at rest. Even in the quantum ground state, its position will always have fluctuations, called the zero-point motion. Although the zero-point fluctuations are unavoidable, they can be manipulated. In this work, using microwave frequency radiation pressure, we both prepare a micron-scale mechanical system in a state near the quantum ground state and then manipulate its thermal fluctuations to produce a stationary, quadrature-squeezed state. We deduce that the variance of one motional quadrature is 0.80 times the zero-point level, or 1 dB of sub-zero-point squeezing. This work is relevant to the quantum engineering of states of matter at large length scales, the study of decoherence of large quantum systems, and for the realization of ultra-sensitive sensing of force and motion

    Polarization Selection Rules and Superconducting Gap Anisotropy in Bi2Sr2CaCu2O8Bi_2Sr_2CaCu_2O_8

    Full text link
    We discuss polarization selection rules for angle-resolved photoemission spectroscopy in Bi2212. Using these we show that the ``hump'' in the superconducting gap observed in the XX quadrant in our earlier work is not on the main CuO2CuO_2 band, but rather on an umklapp band arising from the structural superlattice. The intrinsic gap is most likely quite small over a range of ±10∘\pm 10^\circ about the diagonal directions.Comment: 3 pages, revtex, 3 uuencoded postscript figure

    Asymmetric magnetic interference patterns in 0-pi Josephson junctions

    Full text link
    We examine the magnetic interference patterns of Josephson junctions with a region of 0- and of pi-phase shift. Such junctions have recently been realized as c-axis YBCO-Pb junctions with a single twin boundary in YBCO. We show that in general the junction generates self-fields which introduces an asymmetry in the critical current under reversal of the magnetic field. Numerical calculations of these asymmetries indicate they account well for the unexplained features observed in single twin boundary junctions.Comment: 4 pages, 3 figure

    Macroscopic Symmetry Group Describes Josephson Tunneling in Twinned Crystals

    Full text link
    A macroscopic symmetry group describing the superconducting state of an orthorhombically twinned crystal of YBCO is introduced. This macroscopic symmetry group is different for different symmetries of twin boundaries. Josephson tunneling experiments performed on twinned crystals of YBCO determine this macroscopic symmetry group and hence determine the twin boundary symmetry (but do not experimentally determine whether the microscopic order parameter is primarily d- or s-wave). A consequence of the odd-symmetry twin boundaries in YBCO is the stability of vortices containing one half an elementary flux quantum at the intersection of a twin boundary and certain grain boundaries.Comment: 6 pages, to be published in the Proceedings of the MOS96 Conference in the Journal of Low Temperature Physic

    Josephson tunneling in high-TcT_c superconductors

    Full text link
    This article describes the Josephson tunneling from time-reversal symmetry-breaking states and compares it with that from time-reversal invariant states for both twinned and untwinned crystals and for both cc-axis and basal-plane currents, in a model for orthorhombic YBCO. A macroscopic invariance group describing the superconducting state of a twinned crystal is introduced and shown to provide a useful framework for the discussion of the results for twinned crystals. In addition, a ring geometry, which allows ss-wave and dx2−y2d_{x^2-y^2}-wave superconductivity in a tetragonal superconductor to be distinguished on the basis of symmetry arguments only, is proposed and analyzed. Finally, an appendix gives details of the experimental Josephson tunneling evidence for a superconducting state of orthorhombic ux2+vy2ux^2+vy^2 symmetry in YBCO.Comment: Latex File, 18 pages, 6 Postscript figures, submitted to Phys. Rev.

    Quasiparticle transport and localization in high-T_c superconductors

    Full text link
    We present a theory of the effects of impurity scattering in d_{x^2-y^2} superconductors and their quantum disordered counterparts, based on a non-linear sigma model formulation. We show the existence, in a quasi-two-dimensional system, of a novel spin-metal phase with a non-zero spin diffusion constant at zero temperature. With decreasing inter-layer coupling, the system undergoes a quantum phase transition (in a new universality class) to a localized spin-insulator. Experimental implications for spin and thermal transport in the high-temperature superconductors are discussed.Comment: 4 pages, 1 figur

    Phase coherent transport in hybrid superconducting structures: the case of d-wave superconductors

    Full text link
    We examine the effect of d-wave symmetry on zero bias anomalies in normal-superconducting tunnel junctions and phase-periodic conductances in Andreev interferometers. In the presence of d-wave pairing, zero-bias anomalies are suppressed compared with the s-wave case. For Andreev interferometers with aligned islands, the phase-periodic conductance is insensistive to the nature of the pairing, whereas for non-aligned islands, the nature of the zero-phase extremum is reversed.Comment: 10 Pages, Revtex. 11 postscript figures available on reques

    Vortices and Quantum tunneling in Current-Biased 0-\pi-0 Josephson Junctions of d-wave Superconductors

    Full text link
    We study a current-biased 0-\pi-0 Josephson junction made by high-T_c superconductors, theoretically. When a length of the \pi junction is large enough, this junction contains a vortex-antivortex pair at both ends of the \pi junction. Magnetic flux carried by the vortices is calculated using the sine-Gordon equation. The result shows that the magnetic flux of the vortices is suppressed to zero as the distance between the vortices is reduced. By applying an external current, the orientation of the vortices is reversed, and a voltage pulse is generated. The current needed for this transition and generated pulse energy are calculated. Macroscopic quantum tunneling (MQT) in this transition is also studied. The tunneling rate has been evaluated by an effective Hamiltonian with one degree of freedom.Comment: 12 pages, LaTeX with 5 PS figures, using jpsj.st

    Spontaneous Flux and Magnetic Interference Patterns in 0-pi Josephson Junctions

    Full text link
    The spontaneous flux generation and magnetic field modulation of the critical current in a 0-pi Josephson junction are calculated for different ratios of the junction length to the Josephson penetration depth, and different ratios of the 0-junction length to the pi-junction length. These calculations apply to a Pb-YBCO c-axis oriented junction with one YBCO twin boundary, as well as other experimental systems. Measurements of such a junction can provide information on the nature of the c-axis Josephson coupling and the symmetry of the order parameter in YBCO. We find spontaneous flux even for very short symmetric 0-pi junctions, but asymmetric junctions have qualitatively different behavior.Comment: 13 pages, TEX,+ 7 figures, postscrip
    • …
    corecore