29 research outputs found
Coupled ice sheet–climate modeling under glacial and pre-industrial boundary conditions
In the standard Paleoclimate Modelling Intercomparison Project (PMIP) experiments, the Last Glacial Maximum (LGM) is modeled in quasi-equilibrium with atmosphere–ocean–vegetation general circulation models (AOVGCMs) with prescribed ice sheets. This can lead to inconsistencies between the modeled climate and ice sheets. One way to avoid this problem would be to model the ice sheets explicitly. Here, we present the first results from coupled ice sheet–climate simulations for the pre-industrial times and the LGM. Our setup consists of the AOVGCM ECHAM5/MPIOM/LPJ bidirectionally coupled with the Parallel Ice Sheet Model (PISM) covering the Northern Hemisphere. The results of the pre-industrial and LGM simulations agree reasonably well with reconstructions and observations. This shows that the model system adequately represents large, non-linear climate perturbations. A large part of the drainage of the ice sheets occurs in ice streams. Most modeled ice stream systems show recurring surges as internal oscillations. The Hudson Strait Ice Stream surges with an ice volume equivalent to about 5 m sea level and a recurrence interval of about 7000 yr. This is in agreement with basic expectations for Heinrich events. Under LGM boundary conditions, different ice sheet configurations imply different locations of deep water formation
A detailed view into the eruption clouds of Santiaguito volcano, Guatemala, using Doppler radar
Using Doppler radar technology we are able to show that eruptions at Santiaguito volcano, Guatemala, are comprised of multiple explosive degassing pulses occurring at a frequency of 0.2 to 0.3 Hz. The Doppler radar system was installed about 2.7 km away from the active dome on the top of Santa Maria volcano. During four days of continuous measurement 157 eruptive events were recorded. The Doppler radar data reveals a vertical uplift of the dome surface of about 50 cm immediately prior to a first degassing pulse. Particle velocities range from 10 to 15 m/s (in the line of sight of the radar). In 80% of the observed eruptions a second degassing pulse emanates from the dome with significantly higher particle velocities (20-25 m/s again line of sight) and increased echo power, which implies an increase in mass flux. We carry out numerical experiments of ballistic particle transport and calculate corresponding synthetic radar signals. These calculations show that the observations are consistent with a pulsed release of material from the dome of Santiaguito volcano
Sensitivity of Heinrich-type ice-sheet surge characteristics to boundary forcing perturbations
Heinrich-type ice-sheet surges are one of the prominent signals of glacial
climate variability. They are characterised as abrupt, quasi-periodic episodes
of ice-sheet instabilities during which large numbers of icebergs are released from
the Laurentide ice sheet. The mechanisms controlling the timing and occurrence
of Heinrich-type ice-sheet surges remain poorly constrained to this day. Here,
we use a coupled ice sheet–solid Earth model to identify and quantify the
importance of boundary forcing for the surge cycle length of Heinrich-type
ice-sheet surges for two prominent ice streams of the Laurentide ice sheet – the
land-terminating Mackenzie ice stream and the marine-terminating Hudson ice
stream. Both ice streams show responses of similar magnitude to surface mass
balance and geothermal heat flux perturbations, but Mackenzie ice stream is more sensitive to
ice surface temperature perturbations, a fact likely caused by the warmer
climate in this region. Ocean and sea-level forcing as well as different frequencies of the same
forcing have a negligible effect on the surge cycle length. The simulations also
highlight the fact that only a certain parameter space exists under which ice-sheet
oscillations can be maintained. Transitioning from an oscillatory state to a
persistent ice streaming state can result in an ice volume loss of up to 30 %
for the respective ice stream drainage basin under otherwise constant climate
conditions. We show that Mackenzie ice stream is susceptible to undergoing such
a transition in response to all tested positive climate perturbations. This
underlines the potential of the Mackenzie region to have contributed to
prominent abrupt climate change events of the last deglaciation.</p
Atmospheric energy spectra in global kilometre-scale models
Eleven 40-day long integrations of five different global models with horizontal resolutions of less than 9 km are compared in terms of their global energy spectra. The method of normal-mode function decomposition is used to distinguish between balanced (Rossby wave; RW) and unbalanced (inertia-gravity wave; IGW) circulation. The simulations produce the expected canonical shape of the spectra, but their spectral slopes at mesoscales, and the zonal scale at which RW and IGW spectra intersect differ significantly. The partitioning of total wave energies into RWs an IGWs is most sensitive to the turbulence closure scheme and this partitioning is what determines the spectral crossing scale in the simulations, which differs by a factor of up to two. It implies that care must be taken when using simple spatial filtering to compare gravity wave phenomena in storm-resolving simulations, even when the model horizontal resolutions are similar. In contrast to the energy partitioning between the RWs and IGWs, changes in turbulence closure schemes do not seem to strongly affect spectral slopes, which only exhibit major differences at mesoscales. Despite their minor contribution to the global (horizontal kinetic plus potential available) energy, small scales are important for driving the global mean circulation. Our results support the conclusions of previous studies that the strength of convection is a relevant factor for explaining discrepancies in the energies at small scales. The models studied here produce the major large-scale features of tropical precipitation patterns. However, particularly at large horizontal wavenumbers, the spectra of upper tropospheric vertical velocity, which is a good indicator for the strength of deep convection, differ by factors of three or more in energy. High vertical kinetic energies at small scales are mostly found in those models that do not use any convective parameterisation
Earth Virtualization Engines -- A Technical Perspective
Participants of the Berlin Summit on Earth Virtualization Engines (EVEs)
discussed ideas and concepts to improve our ability to cope with climate
change. EVEs aim to provide interactive and accessible climate simulations and
data for a wide range of users. They combine high-resolution physics-based
models with machine learning techniques to improve the fidelity, efficiency,
and interpretability of climate projections. At their core, EVEs offer a
federated data layer that enables simple and fast access to exabyte-sized
climate data through simple interfaces. In this article, we summarize the
technical challenges and opportunities for developing EVEs, and argue that they
are essential for addressing the consequences of climate change
The ICON Earth System Model Version 1.0
This work documents ICON-ESM 1.0, the first version of a coupled model based 19 on the ICON framework 20 • Performance of ICON-ESM is assessed by means of CMIP6 DECK experiments 21 at standard CMIP-type resolution 22 • ICON-ESM reproduces the observed temperature evolution. Biases in clouds, winds, 23 sea-ice, and ocean properties are larger than in MPI-ESM. Abstract 25 This work documents the ICON-Earth System Model (ICON-ESM V1.0), the first cou-26 pled model based on the ICON (ICOsahedral Non-hydrostatic) framework with its un-27 structured, icosahedral grid concept. The ICON-A atmosphere uses a nonhydrostatic dy-28 namical core and the ocean model ICON-O builds on the same ICON infrastructure, but 29 applies the Boussinesq and hydrostatic approximation and includes a sea-ice model. The 30 ICON-Land module provides a new framework for the modelling of land processes and 31 the terrestrial carbon cycle. The oceanic carbon cycle and biogeochemistry are repre-32 sented by the Hamburg Ocean Carbon Cycle module. We describe the tuning and spin-33 up of a base-line version at a resolution typical for models participating in the Coupled 34 Model Intercomparison Project (CMIP). The performance of ICON-ESM is assessed by 35 means of a set of standard CMIP6 simulations. Achievements are well-balanced top-of-36 atmosphere radiation, stable key climate quantities in the control simulation, and a good 37 representation of the historical surface temperature evolution. The model has overall bi-38 ases, which are comparable to those of other CMIP models, but ICON-ESM performs 39 less well than its predecessor, the Max Planck Institute Earth System Model. Problem-40 atic biases are diagnosed in ICON-ESM in the vertical cloud distribution and the mean 41 zonal wind field. In the ocean, sub-surface temperature and salinity biases are of con-42 cern as is a too strong seasonal cycle of the sea-ice cover in both hemispheres. ICON-43 ESM V1.0 serves as a basis for further developments that will take advantage of ICON-44 specific properties such as spatially varying resolution, and configurations at very high 45 resolution. 46 Plain Language Summary 47 ICON-ESM is a completely new coupled climate and earth system model that ap-48 plies novel design principles and numerical techniques. The atmosphere model applies 49 a non-hydrostatic dynamical core, both atmosphere and ocean models apply unstruc-50 tured meshes, and the model is adapted for high-performance computing systems. This 51 article describes how the component models for atmosphere, land, and ocean are cou-52 pled together and how we achieve a stable climate by setting certain tuning parameters 53 and performing sensitivity experiments. We evaluate the performance of our new model 54 by running a set of experiments under pre-industrial and historical climate conditions 55 as well as a set of idealized greenhouse-gas-increase experiments. These experiments were 56 designed by the Coupled Model Intercomparison Project (CMIP) and allow us to com-57 pare the results to those from other CMIP models and the predecessor of our model, the 58 Max Planck Institute for Meteorology Earth System Model. While we diagnose overall 59 satisfactory performance, we find that ICON-ESM features somewhat larger biases in 60 several quantities compared to its predecessor at comparable grid resolution. We empha-61 size that the present configuration serves as a basis from where future development steps 62 will open up new perspectives in earth system modellin
Recommended from our members
Earth Virtualization Engines: a technical perspective
Participants of the Berlin Summit on Earth Virtualization Engines (EVEs) discussed ideas and concepts to improve our ability to cope with climate change. EVEs aim to provide interactive and accessible climate simulations and data for a wide range of users. They combine high-resolution physics-based models with machine learning techniques to improve the fidelity, efficiency, and interpretability of climate projections. At their core, EVEs offer a federated data layer that enables simple and fast access to exabyte-sized climate data through simple interfaces. In this article, we summarize the technical challenges and opportunities for developing EVEs, and argue that they are essential for addressing the consequences of climate change
The climate of a retrograde rotating Earth
To enhance understanding of Earth's climate, numerical experiments are
performed contrasting a retrograde and prograde rotating Earth using the Max
Planck Institute Earth system model. The experiments show that the sense of
rotation has relatively little impact on the globally and zonally averaged
energy budgets but leads to large shifts in continental climates, patterns
of precipitation, and regions of deep water formation.Changes in the zonal asymmetries of the continental climates are expected
given ideas developed more than a hundred years ago. Unexpected was, however,
the switch in the character of the European–African climate with that of the
Americas, with a drying of the former and a greening of the latter. Also
unexpected was a shift in the storm track activity from the oceans to the
land in the Northern Hemisphere. The different patterns of storms and changes
in the direction of the trades influence fresh water transport, which may
underpin the change of the role of the North Atlantic and the Pacific in
terms of deep water formation, overturning and northward oceanic heat
transport. These changes greatly influence northern hemispheric climate and
atmospheric heat transport by eddies in ways that appear energetically
consistent with a southward shift of the zonally and annually averaged
tropical rain bands. Differences between the zonally averaged energy budget
and the rain band shifts leave the door open, however, for an important role
for stationary eddies in determining the position of tropical rains. Changes
in ocean biogeochemistry largely follow shifts in ocean circulation, but the
emergence of a super oxygen minimum zone in the Indian Ocean is not
expected. The upwelling of phosphate-enriched and nitrate-depleted water
provokes a dominance of cyanobacteria over bulk phytoplankton over vast areas – a phenomenon not observed in the prograde model.What would the climate of Earth look like if it would rotate in the reversed
(retrograde) direction? Which of the characteristic climate patterns in the
ocean, atmosphere, or land that are observed in a present-day climate are the
result of the direction of Earth's rotation? Is, for example, the structure
of the oceanic meridional overturning circulation (MOC) a consequence of the
interplay of basin location and rotation direction? In experiments with the
Max Planck Institute Earth system model (MPI-ESM), we investigate the effects
of a retrograde rotation in all aspects of the climate system.The expected consequences of a retrograde rotation are reversals of the zonal
wind and ocean circulation patterns. These changes are associated with major
shifts in the temperature and precipitation patterns. For example, the
temperature gradient between Europe and eastern Siberia is reversed, and the
Sahara greens, while large parts of the Americas become deserts.
Interestingly, the Intertropical Convergence Zone (ITCZ) shifts southward and
the modeled double ITCZ in the Pacific changes to a single ITCZ, a result of
zonal asymmetries in the structure of the tropical circulation.One of the most prominent non-trivial effects of a retrograde rotation is a
collapse of the Atlantic MOC, while a strong overturning cell emerges in the
Pacific. This clearly shows that the position of the MOC is not controlled by
the sizes of the basins or by mountain chains splitting the continents in
unequal runoff basins but by the location of the basins relative to the
dominant wind directions. As a consequence of the changes in the ocean
circulation, a super oxygen minimum zone develops in the Indian Ocean
leading to upwelling of phosphate-enriched and nitrate-depleted water. These
conditions provoke a dominance of cyanobacteria over bulk phytoplankton over
vast areas, a phenomenon not observed in the prograde model.</p