6 research outputs found

    Solid-state reference electrodes based on carbon nanotubes and polyacrylate membranes

    Get PDF
    A novel potentiometric solid-state reference electrode containing single-walled carbon nanotubes as the transducer layer between a polyacrylate membrane and the conductor is reported here. Single-walled carbon nanotubes act as an efficient transducer of the constant potentiometric signal originating from the reference membrane containing the Ag/AgCl/Cl− ions system, and they are needed to obtain a stable reference potentiometric signal. Furthermore, we have taken advantage of the light insensitivity of single-walled carbon nanotubes to improve the analytical performance characteristics of previously reported solid-state reference electrodes. Four different polyacrylate polymers have been selected in order to identify the most efficient reservoir for the Ag/AgCl system. Finally, two different arrangements have been assessed: (1) a solid-state reference electrode using photo-polymerised n-butyl acrylate polymer and (2) a thermo-polymerised methyl methacrylate:n-butyl acrylate (1:10) polymer. The sensitivity to various salts, pH and light, as well as time of response and stability, has been tested: the best results were obtained using single-walled carbon nanotubes and photo-polymerised n-butyl acrylate polymer. Water transport plays an important role in the potentiometric performance of acrylate membranes, so a new screening test method has been developed to qualitatively assess the difference in water percolation between the polyacrylic membranes studied. The results presented here open the way for the true miniaturisation of potentiometric systems using the excellent properties of single-walled carbon nanotubes

    The Whereabouts of an Ancient Wanderer: Global Phylogeography of the Solitary Ascidian Styela plicata

    Get PDF
    Genetic tools have greatly aided in tracing the sources and colonization history of introduced species. However, recurrent introductions and repeated shuffling of populations may have blurred some of the genetic signals left by ancient introductions. Styela plicata is a solitary ascidian distributed worldwide. Although its origin remains unclear, this species is believed to have spread worldwide by travelling on ship's hulls. The goals of this study were to infer the genetic structure and global phylogeography of S. plicata and to look for present-day and historical genetic patterns. Two genetic markers were used: a fragment of the mitochondrial gene Cytochrome Oxidase subunit I (COI) and a fragment of the nuclear gene Adenine Nucleotide Transporter/ADP-ATP Translocase (ANT). A total of 368 individuals for COI and 315 for ANT were sequenced from 17 locations worldwide. The levels of gene diversity were moderate for COI to high for ANT. The Mediterranean populations showed the least diversity and allelic richness for both markers, while the Indian, Atlantic and Pacific Oceans had the highest gene and nucleotide diversities. Network and phylogenetic analyses with COI and ANT revealed two groups of alleles separated by 15 and 4 mutational steps, respectively. The existence of different lineages suggested an ancient population split. However, the geographic distributions of these groups did not show any consistent pattern, indicating different phylogeographic histories for each gene. Genetic divergence was significant for many population-pairs irrespective of the geographic distance among them. Stochastic introduction events are reflected in the uneven distribution of COI and ANT allele frequencies and groups among many populations. Our results confirmed that S. plicata has been present in all studied oceans for a long time, and that recurrent colonization events and occasional shuffling among populations have determined the actual genetic structure of this species

    Year-round reproduction in a seasonal sea: biological cycle of the introduced ascidian Styela plicata in the Western Mediterranean

    Get PDF
    10 páginas, 6 figuras.The widely introduced ascidian Styela plicata is very common in the Western Mediterranean, an area that can act as a source for secondary introductions due to its high shipping activity. In order to understand the potential of this species to colonize new habitats, its reproductive features were assessed in the Western Mediterranean by means of monthly monitoring of two populations (Vilanova i la Geltru´ 41 1205300N, 1 4401100E; Blanes 41 4002900N, 2 4705600E) from January 2009 to December 2010. The reproductive activity of this species was assessed through gonad histology and a gonad index. Population size-structure was measured monthly in order to study recruitment dynamics. No clear seasonal pattern was observed, and mature gametes and recruits were present all year long. Spawning was potentially continuous, although it seemed punctuated with pulses of gamete release, particularly in spring. A prolonged reproductive period is likely to confer a competitive advantage on S. plicata in temperate seas, where most species reproduce seasonally, and may promote recurrent introductions as larvae are available for settlement on transport vectors over much of the year.This research was supported by the Marie Curie International Reintegration Grant FP7-PEOPLE-2010-RG 277038 within the 7th European Community Framework Program, by the Spanish Government projects CTM2010-22218 and CTM2010- 17755, the Catalan Government grant 2009SGR-484 for Consolidated Research Groups, and by a University of Barcelona APIF fellowship to MCP.Peer reviewe

    Marine invasion genetics: from spatio-temporal patterns to evolutionary outcomes

    Get PDF
    Over the last 15 years studies on invasion genetics have provided important insights to unravel cryptic diversity, track the origin of colonizers and reveal pathways of introductions. Despite all these advances, to date little is known about how evolutionary processes influence the observed genetic patterns in marine biological invasions. Here, firstly we review the literature on invasion genetics that include samples from European seas. These seas constitute a wide array of unique water masses with diverse degrees of connectivity, and have a long history of species introductions. We found that only a small fraction of the recorded introduced species has been genetically analysed. Furthermore, most studies restrict their approach to describe patterns of cryptic diversity and genetic structure, with the underlying mechanisms involved in the invasion process being largely understudied. Secondly, we analyse how genetic, reproductive and anthropogenic traits shape genetic patterns of marine introduced species. We found that most studies reveal similar genetic diversity values in both native and introduced ranges, report evidence of multiple introductions, and show that genetic patterns in the introduced range are not explained by taxonomic group or reproductive strategy. Finally, we discuss the evolutionary implications derived from genetic patterns observed in non-indigenous species. We identify different scenarios that are determined by propagule pressure, phenotypic plasticity and pre-adaptation, and the effects of selection and genetic admixture. We conclude that there is a need for further investigations of evolutionary mechanisms that affect individual fitness and adaptation to rapid environmental change

    Marine invasion genetics: from spatio-temporal patterns to evolutionary outcomes

    No full text
    corecore