10,432 research outputs found
Recommended from our members
Wannier–Koopmans method calculations for transition metal oxide band gaps
The widely used density functional theory (DFT) has a major drawback of underestimating the band gaps of materials. Wannier–Koopmans method (WKM) was recently developed for band gap calculations with accuracy on a par with more complicated methods. WKM has been tested for main group covalent semiconductors, alkali halides, 2D materials, and organic crystals. Here we apply the WKM to another interesting type of material system: the transition metal (TM) oxides. TM oxides can be classified as either with d0 or d10 closed shell occupancy or partially occupied open shell configuration, and the latter is known to be strongly correlated Mott insulators. We found that, while WKM provides adequate band gaps for the d0 and d10 TM oxides, it fails to provide correct band gaps for the group with partially occupied d states. This issue is also found in other mean-field approaches like the GW calculations. We believe that the problem comes from a strong interaction between the occupied and unoccupied d-state Wannier functions in a partially occupied d-state system. We also found that, for pseudopotential calculations including deep core levels, it is necessary to remove the electron densities of these deep core levels in the Hartree and exchange–correlation energy functional when calculating the WKM correction parameters for the d-state Wannier functions
Characterising and modelling groundwater discharge in anagricultural wetland on the French Atlantic coast
Interaction between a wetland and its surrounding aquifer was studied in the Rochefort agricultural marsh (150 km<sup>2</sup>). Groundwater discharge in the marsh was measured with a network of nested piezometers. Hydrological modelling of the wetland showed that a water volume of 770,000 m<sup>3</sup> yr<sup>–1</sup> is discharging into the marsh, but that this water flux essentially takes place along the lateral borders of the wetland. However, this natural discharge volume represents only 20% of the artificial freshwater injected each year into the wetland to maintain the water level close to the soil surface. Understanding and quantifying the groundwater component in wetland hydrology is crucial for wetland management and conservation.</b></p> <p style='line-height: 20px;'><b>Keywords: </b>wetland, hydrology, groundwater, modelling, mars
Spin Hall Effect and Spin Transfer in Disordered Rashba Model
Based on numerical study of the Rashba model, we show that the spin Hall
conductance remains finite in the presence of disorder up to a characteristic
length scale, beyond which it vanishes exponentially with the system size. We
further perform a Laughlin's gauge experiment numerically and find that all
energy levels cannot cross each other during an adiabatic insertion of the flux
in accordance with the general level-repulsion rule. It results in zero spin
transfer between two edges of the sample as each state always evolves back
after the insertion of one flux quantum, in contrast to the quantum Hall
effect. It implies that the topological spin Hall effect vanishes with the
turn-on of disorder.Comment: 4 pages, 4 figures final versio
Quantum Spin Hall Effect and Topologically Invariant Chern Numbers
We present a topological description of quantum spin Hall effect (QSHE) in a
two-dimensional electron system on honeycomb lattice with both intrinsic and
Rashba spin-orbit couplings. We show that the topology of the band insulator
can be characterized by a traceless matrix of first Chern integers.
The nontrivial QSHE phase is identified by the nonzero diagonal matrix elements
of the Chern number matrix (CNM). A spin Chern number is derived from the CNM,
which is conserved in the presence of finite disorder scattering and spin
nonconserving Rashba coupling. By using the Laughlin's gedanken experiment, we
numerically calculate the spin polarization and spin transfer rate of the
conducting edge states, and determine a phase diagram for the QSHE.Comment: 4 pages and 4 figure
Spectral Analyses of the Nearest Persistent Ultraluminous X-Ray Source M33 X-8
We provide a detailed analysis of 12 XMM observations of the nearest
persistent extragalactic ultraluminous X-ray source (ULX), M33 X-8. No
significant spectral evolution is detected between the observations, therefore
we combine the individual observations to increase the signal-to-noise ratio
for spectral fitting. The combined spectra are best fitted by the
self-consistent p-free disk plus power-law component model with p =
0.571_{-0.030}^{+0.032}, kT_{in} = 1.38_{-0.08}^{+0.09} keV, and the flux ratio
of the p-free disk component to the power-law component being 0.63:0.37 in the
0.3 -- 10 keV band. The fitting indicates that the black hole in M33 X-8 is of
\sim 10 M_{\odot} and accretes at a super-Eddington rate (\sim 1.5 L_{Edd}),
and the phase of the accretion disk is close to a slim disk (p = 0.5). We
report, for the first time, that an extra power-law component is required in
addition to the p-free disk model for ULXs. In super-Eddington cases, the
power-law component may possibly result from the optically thin inner region f
the disk or a comptonized corona similar to that of a standard thin disk.Comment: 11 pages, 1 table, 2 figures, accepted by PAS
Multi-wavelength variability properties of Fermi blazar S5 0716+714
S5 0716+714 is a typical BL Lacertae object. In this paper we present the
analysis and results of long term simultaneous observations in the radio,
near-infrared, optical, X-ray and -ray bands, together with our own
photometric observations for this source. The light curves show that the
variability amplitudes in -ray and optical bands are larger than those
in the hard X-ray and radio bands and that the spectral energy distribution
(SED) peaks move to shorter wavelengths when the source becomes brighter, which
are similar to other blazars, i.e., more variable at wavelengths shorter than
the SED peak frequencies. Analysis shows that the characteristic variability
timescales in the 14.5 GHz, the optical, the X-ray, and the -ray bands
are comparable to each other. The variations of the hard X-ray and 14.5 GHz
emissions are correlated with zero-lag, so are the V band and -ray
variations, which are consistent with the leptonic models. Coincidences of
-ray and optical flares with a dramatic change of the optical
polarization are detected. Hadronic models do not have the same nature
explanation for these observations as the leptonic models. A strong optical
flare correlating a -ray flare whose peak flux is lower than the
average flux is detected. Leptonic model can explain this variability
phenomenon through simultaneous SED modeling. Different leptonic models are
distinguished by average SED modeling. The synchrotron plus synchrotron
self-Compton (SSC) model is ruled out due to the extreme input parameters.
Scattering of external seed photons, such as the hot dust or broad line region
emission, and the SSC process are probably both needed to explain the
-ray emission of S5 0716+714.Comment: 43 pages, 13 figures, 3 tables, to be appeared in Ap
Phase diagram of the frustrated, spatially anisotropic S=1 antiferromagnet on a square lattice
We study the S=1 square lattice Heisenberg antiferromagnet with spatially
anisotropic nearest neighbor couplings , frustrated by a
next-nearest neighbor coupling numerically using the density-matrix
renormalization group (DMRG) method and analytically employing the
Schwinger-Boson mean-field theory (SBMFT). Up to relatively strong values of
the anisotropy, within both methods we find quantum fluctuations to stabilize
the N\'{e}el ordered state above the classically stable region. Whereas SBMFT
suggests a fluctuation-induced first order transition between the N\'{e}el
state and a stripe antiferromagnet for and an
intermediate paramagnetic region opening only for very strong anisotropy, the
DMRG results clearly demonstrate that the two magnetically ordered phases are
separated by a quantum disordered region for all values of the anisotropy with
the remarkable implication that the quantum paramagnetic phase of the spatially
isotropic - model is continuously connected to the limit of
decoupled Haldane spin chains. Our findings indicate that for S=1 quantum
fluctuations in strongly frustrated antiferromagnets are crucial and not
correctly treated on the semiclassical level.Comment: 10 pages, 10 figure
Spin-charge separation in the single hole doped Mott antiferromagnet
The motion of a single hole in a Mott antiferromagnet is investigated based
on the t-J model. An exact expression of the energy spectrum is obtained, in
which the irreparable phase string effect [Phys. Rev. Lett. 77, 5102 (1996)] is
explicitly present. By identifying the phase string effect with spin backflow,
we point out that spin-charge separation must exist in such a system: the doped
hole has to decay into a neutral spinon and a spinless holon, together with the
phase string. We show that while the spinon remains coherent, the holon motion
is deterred by the phase string, resulting in its localization in space. We
calculate the electron spectral function which explains the line shape of the
spectral function as well as the ``quasiparticle'' spectrum observed in
angle-resolved photoemission experiments. Other analytic and numerical
approaches are discussed based on the present framework.Comment: 16 pages, 9 figures; references updated; to appear in Phys. Rev.
- …