1,074 research outputs found

    Rates and Equilibria for a Photoisomerizable Antagonist at the Acetylcholine Receptor of Electrophorus Electroplaques

    Get PDF
    Voltage-jump and light-flash experiments have been performed on isolated Electrophorus electroplaques exposed simultaneously to nicotinic agonists and to the photoisomerizable compound 2,2'-bis-[α-(trimethylammonium)methyl]-azobenzene (2BQ). Dose-response curves are shifted to the right in a nearly parallel fashion by 2BQ, which suggests competitive antagonism; dose-ratio analyses show apparent dissociation constants of 0.3 and 1 µM for the cis and trans isomers, respectively. Flash-induced trans → cis concentration jumps produce the expected decrease in agonist-induced conductance; the time constant is several tens of milliseconds. From the concentration dependence of these rates, we conclude that the association and dissociation rate constants for the cis-2BQ-receptor binding are approximately ~ 10^8 M^(-1) s^(-1) and 60 s^(-1) at 20ºC; the Q_(10) is 3. Flash-induced cis → trans photoisomerizations produce molecular rearrangements of the ligand-receptor complex, but the resulting relaxations probably reflect the kinetics of buffered diffusion rather than of the interaction between trans-2BQ and the receptor. Antagonists seem to bind about an order of magnitude more slowly than agonists at nicotinic receptors

    Magnetic superelasticity and inverse magnetocaloric effect in Ni-Mn-In

    Get PDF
    Applying a magnetic field to a ferromagnetic Ni50_{50}Mn34_{34}In16_{16} alloy in the martensitic state induces a structural phase transition to the austenitic state. This is accompanied by a strain which recovers on removing the magnetic field giving the system a magnetically superelastic character. A further property of this alloy is that it also shows the inverse magnetocaloric effect. The magnetic superelasticity and the inverse magnetocaloric effect in Ni-Mn-In and their association with the first order structural transition is studied by magnetization, strain, and neutron diffraction studies under magnetic field.Comment: 6 pages, 8 figures. Published in the Physical Review

    Six‐Axis Ground Motion Measurements of Caldera Collapse at Kīlauea Volcano, Hawai'i—More Data, More Puzzles?

    Get PDF
    Near‐field recordings of large earthquakes and volcano‐induced events using traditional seismological instrumentation often suffer from unaccounted effects of local tilt and saturation of signals. Recent hardware advances have led to the development of the blueSeis‐3A, a very broadband, highly sensitive rotational motion sensor. We installed this sensor in close proximity to permanently deployed classical instrumentation (i.e., translational seismometer, accelerometer, and tiltmeter) at the Hawaiian Volcano Observatory (USGS). There, we were able to record three ~Mw 5 earthquakes associated with large collapse events during the later phase of the 2018 Kīlauea summit eruption. Located less than 2 km from the origins of these sources, the combined six‐axis translational and rotational measurements revealed clear static rotations around all three coordinate axes. With these six component recordings, we have been able to reconstruct the complete time history of ground motion of a fixed point during an earthquake for the first time

    Ground state representations of loop algebras

    Full text link
    Let g be a simple Lie algebra, Lg be the loop algebra of g. Fixing a point in S^1 and identifying the real line with the punctured circle, we consider the subalgebra Sg of Lg of rapidly decreasing elements on R. We classify the translation-invariant 2-cocycles on Sg. We show that the ground state representation of Sg is unique for each cocycle. These ground states correspond precisely to the vacuum representations of Lg.Comment: 22 pages, no figur

    Numerical Studies on the Magnetism of Fe-Ni-Mn Alloys in the Invar Region

    Full text link
    By means of self-consistent semi-empirical LCAO calculations we study the itinerant magnetism of (Fe_{0.65}Ni_{0.35})_{1-y} Mn_y alloys for y between 0 and 0.22 at T=0 K, neglecting only the transverse spin components. We find that the magnetic behaviour is quite complicated on a local scale. In addition to ferromagnetic behaviour, also metastable spin-glass-like configurations are found. In the same approach, using a direct numerical calculation by the Kubo-Formalism without any fit parameters, we also calculate the electrical conductance in the magnetic state and find that the yy-dependence observed in the experiments is well reproduced by our calculations, except of an overall factor of rougly 5, by which our resistivities are too large.Comment: 12 pages (Latex, to be applied 2 times) + 13 figures (eps-files
    corecore